
1	

CS1110 lecture 5 14 Sept 2010 ���
Testing; the class Object; toString; static variables & methods	

Reading for this lecture: Testing
with JUnit (Appendix I.2.4 &
pp. 385--388), the class Object
(pp. 153-154), function toString
(pp. 112-113), static variables
and methods (Sec. 1.5, p. 47).	

Reading for next two lectures: Executing
method calls, if-statements, the return
statement in a function, local variables.
Chapter 2 except 2.3.8 and 2.3.9.	

This reading will some clarify some
concepts, such as method parameters, that
we’ve had to gloss over so far.	

Keep your iClickers and a sheet of paper out.	

A1 (still) due Saturday Sept 18 on CMS; group yourselves by Wed. 	

Ignore “Extended Until” on CMS	

(We had to put in a fake extension to work around a CMS limitation.)	

1	

Email re: lab 03, quiz 2, etc. was sent on Saturday. Bouncing emails: cabooserwar,
blacktora4546, jfk54, tariq.mozaini, lukeg432, dc.mcmurtry10, khyjhcho. 	

Organizing and streamlining the testing process ���

Testing: Process of analyzing, running program, looking for bugs
(errors).	

Test case: A set of input values, together with the expected output.	

Develop test cases for a method from its specification --- even
before you write the method’s body.	

/** = number of vowels in word w.	

Precondition: w contains at least one letter and nothing but letters*/	

public int numberOfVowels(String w) {	

 // (nothing here yet!)	

}	

Test cases “need”, “rhythm” reveal vagueness in the spec!	

Developing test cases first, in “critique” mode, can prevent wasted work.	

 2	

“Slinky Dog”	

j0	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

w0	

0	

…	

dName	

Person	

s0	

Person(String, int, boolean)	

…	

“Jessie”	

null	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

b0	

3	

…	

dName	

Person	

j0	

Person(String, int, boolean)	

…	

“Buzz Lightyear”	

j0	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

w0	

2	

…	

dName	

Person	

b0	

Person(String, int, boolean)	

…	

“Woody”	

j0	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

b0	

2	

…	

dName	

Person	

w0	

Person(String, int, boolean)	

…	

“Lotso”	

null	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

L0	

…	

dName	

L0	

Person(String, int, boolean)	

…	

1	

Person	

“talking telephone”	

null	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

null	

0	

…	

dName	

Person	

t0	

Person(String, int, boolean)	

…	

A1 possible test cases 	

3	

Specifications and headers for methods in class Worker, plus test cases 	

 /** Constructor: a worker with last name n (“” if none), SSN s,	

 * and boss b (null if none).	

 * Precondition: n is not null, s in 0..999999999 with no leading zeros,	

 * so SSN 012-34-5678 should be given as 12345678.*/	

 public Worker(String n, int s, Worker b) 	

/** = worker's last name */	

public String getName()	

/** Set worker's last name to n ("" if none).	

 * Precondition: n is not null.*/	

 public void setName(String n)	

/** = last 4 SSN digits without leading zeroes. */	

public int getSSN4()	

 /** = worker's boss (null if none) */	

 public Worker getBoss()	

 /** Set boss to b */	

 public void setBoss(Worker b)	

a1	

Worker	

name	

 “Obama”	

ssn	

 123456789	

boss	

 null	

…	

a0	

Worker	

name	

 “Biden”	

ssn	

 2	

boss	

 o1	

…	

a1	

 a0	

w2	

w1	

 4	

/** Test constructor and getters*/	

public void testConstructor() {	

 Worker w1= new Worker(“Obama", 123456789, null);	

 assertEquals(“Obama”, w1.getName());	

 assertEquals(6789, w1.getSSN4());	

 assertEquals(null, w1.getBoss());	

 Worker w2= new Worker(“Biden", 2, w1);	

 assertEquals(“Biden”, w2.getName());	

 assertEquals(2, w2.getSSN4());	

 assertEquals(w1, w2.getBoss());	

/ 	

 // should test last name “”, too	

}	

A testMethod to test a constructor (and getter methods)	

Every time you click button Test in DrJava, all “testX methods” are
called, in some order.	

first
test
case	

second
test
case	

assertEquals(x,y): 	

test whether x (expected)
equals y (computed); print
an error message and stop
the method if they are not
equal.	

Pg 488 lists some other
methods that can be used.	

File->new JUnit test case … [save in same directory as Worker.java] imports
junit.framework.TestCase, with key methods.	

5	

Class Object: The superest class of them all	

A minor mystery: since Worker doesn’t extend anything, it
seems that it should have only the methods we wrote for it.
But it has some other methods, too.	

Java feature: Every class that does not extend another one
automatically extends class Object. That is,	

	

public class C { … }	

is equivalent to	

	

public class C extends Object { …}	

6	

2	

Class Object: The superest class of them all	

a1	

Worker	

name	

 “Obama”	

ssn	

 123456789	

boss	

 null	

a1	

Worker	

name	

 “Obama”	

ssn	

 123456789	

boss	

 null	

equals(Object)	

toString()	

…	

So this… is really this.	

Object	

Because it is always there, to
avoid clutter, we don’t
generally draw the partition
for superclass Object. (A2 will be
an exception).	

getBoss()	

…	

getBoss()	

…	

7	

Method toString()	

Convention: c.toString() returns a representation of folder c, giving info
about the values in its fields.	

When a String is expected (or in the Interactions pane), the
expression c is evaluated as c.toString() .	

/** = e.g., “Obama, XXX-XX-6789, boss null”, 	

 	

 	

	

 “Biden, XXX-XX-2, boss Obama” [see posted code for full spec]*/ ���

public String toString() {return ??; } // bad scrunched style, slides are tiny	

(E) none of the above	

(B) lname + “, XXX-XX-” + getSSN4() + “, boss ” + boss.getName()	

(D) lname + “, XXX-XX-” + getSSN4() + “, boss ” + getBoss()	

(C) getName() + “, XXX-XX-” + getSSN4() + “, boss ” + getBoss().getName()	

(A) “lname” + “, XXX-XX-” + “getSSN4()” + “, boss ” + “boss.getName()”	

8	

A static variable appears not in each folder, but as a single entity
in the file drawer. It can be used to maintain information about
multiple folders.	

Declaration:	

 private static int numberOfWorkers; // no. of Worker objects created	

 …	

a0	

Worker	

name	

 “Biden”	

a1	

Worker	

“Obama”	

name	

numberOfWorkers	

 2	

File drawer for class Worker	

Reference the variable by Worker.numberOfWorkers.	

Class, not var holding folder name 	

a1	

x	

…	

 …	

a0	

y	

9	

Make a method static if it doesn’t need to be in all the folders
because:���
it wouldn’t reference the contents of the “containing” folder;���
equivalently, its actions/results would be the exactly the same
no matter which folder it were in. ���

getName() should not be static, but the following should:	

Sample call: Worker.moreThan100() ���
Class, not var holding a folder name 	

/** = “there are more than 100 workers”. */	

public static boolean moreThan100() {	

 return numberOfWorkers > 100;	

}	

A static method is also in the drawer, not in individual folders.���

10	

Should the following function be static? ���
(A) yes (B) no ���

/** = “a and b are not null and the last 4 digits of their SSNs
	

are the same”. */	

/* (This notation means that the function yields 	

 * the truth value of the quoted statement. 	

 * So, a and b are allowed to be null!) */	

public [static??] boolean clashingSSNs(Worker a, Worker b) {	

 return a != null && b != null 	

	

&& a.getSSN4() == b.getSSN4(); 	

}	

11	

