
1	

1	

CS1110 lecture 4 9 Sept. Customizing a class & testing	

•  Classes: fields; getter & setter methods.���
Secs 1.4.2 (p. 45) & 3.1 (pp. 105–110 only)	

•  Constructors. Sec. 3.1.3 (p. 111–112)	

•  Testing methods. Appendix I.2.4 (p. 486)	

Next time:	

Testing using JUnit.	

Object: the superest
class of them all. (pp

153–154).	

Function toString (pg.
112).	

Static components ���
 Sec. 1.5 (p. 47).	

Organizational tip #652:	

For classes with a lot of handouts (like
CS1110), get a 3-ring binder and a 3-hole
punch. Punch holes in the handouts and store
them in the binder; this makes accessing
them much easier. You can easily interleave
other notes and papers, too.	

A “must see” about academic integrity (on youtube):	

http://tinyurl.com/35ltf4n	

 2	

Quiz 2 on Tuesday 14 Sept���
Purpose of a constructor (slide 6); Evaluating a new expression (slide 8)	

Assignment A1 out today, due Sat., 18 Sept. on the CMS.���
Submit A1 earlier if you can so that we can start the iterative feedback
process going.	

Labs and one-on-ones (schedule yours on CMS) will help you with it.	

Collaboration rules for assignment A1 	

• Work alone or with one partner –partners “group themselves” on the
CMS well before submission; only one person submits the files.	

 Partners must do the work together, sit next to each other, with each
taking turns “driving” (handling the mouse and keyboard). It is against
the rules for one partner to develop code and later show it to the other.	

•  Never look at someone else’s code or show yours to someone else.
Never be in possession of someone else’s code (except your partner). ���

3	

One-on-One Sessions (optional)	

Next 1.5 weeks, we are holding 1/2-hour one-on-one sessions on
a computer with each student in CS1110.	

Purpose: Help you develop a class as preparation for A1, give
you a chance to ask questions. Not counted in final course grade.	

Sign up on the course CMS (http://cms.csuglab.cornell.edu): Click on
assignment One-on-one, find the schedule of times/instructors.
Choose one.	

Bring to the 1-on-1: the book; laptop w. DrJava if you have one.	

Students with little or no programming experience report that
these sessions are extremely helpful!	

Office hours: http://www.cs.cornell.edu/courses/cs1110/2010fa/staff.html	

Already started: Prof Gries & Prof Lee (Tu/Th 10:10-10:55 Hollister 202), consultants	

TAs: will begin the week of Sept. 20; check the URL then 	

4	

Field: a variable that is in each folder of a class.	

a0	

Worker	

lname	

 …	

ssn	

 …	

boss	

 …	

Usually, fields are private, so methods that are outside the class
can’t reference them. 	

(Exception: private fields are accessible in the DrJava Interactions pane)	

public class Worker {	

}	

/** An instance is a worker in a certain organization. */	

 private String lname; // Last name (“” if none; never null) 	

 private int ssn; // Social security #: in 0..999999999 	

 private Worker boss; // Immediate boss (null if none) 	

Declarations
of fields	

Class invariant	

5	

Getter and setter methods	

a0	

Worker	

lname	

 …	

ssn	

 …	

boss	

 …	

In the definition of Worker	

(full code on the website):	

 /** = worker’s last name*/	

 public String getName() {	

 return lname;	

 }	

 /** Set worker’s last name to n 	

 (can’t be null, can be “”)*/	

 public void setName(String n) {	

 lname= n;	

 }	

 /** = last 4 SSN digits, as an int*/	

 (Try writing it yourself. 	

 Should there also be a setter? What about for boss?)	

Getter methods (functions) get
or retrieve values from a folder.	

Setter methods (procedures) set
or change fields of a folder	

getName() setName(String t)	

6	

Initialize fields when a folder is first created	

We would like to be able to use something like	

 new Worker(“Obama”, 1, null)	

to create a new Worker, set the last name to “Obama”, the SSN
to 000000001, and the boss to null.	

For this, we use a new kind of method, the constructor.	

Purpose of a constructor: to initialize (some) fields of a newly
created object ���
This initialization should make the class invariant true.	

2	

7	

In the class definition of Worker:	

 /** Constructor: an instance with last
name n (can’t be null, can be “”), SSN s (an
int in 0..999999999), and boss b (null if
none) */	

 public Worker(String n, int s, Worker b)���

 lname= n;	

 ssn= s;	

 boss= b;	

 }	

a0	

Worker	

lname	

 …	

ssn	

 …	

boss	

 …	

getName() …	

Worker(String n, int s,
	

 Worker b)	

Do not put a type
or void here	

Example constructor���

The name of a
constructor: the name of
the class.	

8	

New description of evaluation of a new-expression	

new Worker(“Obama”, 1, null)	

1.  Create a new folder of class ���

Worker, with fields initialized to
default values (e.g. 0 for int) –of
course, put the folder in the file
drawer.	

2. Execute the constructor call	

 Worker(“Obama”, 1, null)	

3. Use the name of the new ���

object as the value of the ���
new-expression.	

a0	

Worker	

lname	

 …	

ssn	

 …	

boss	

 …	

getName() ���
setName(String n)	

Worker(String n, ���
 int s, Worker b) …	

Memorize this new definition! Today! Now!	

9	

Testing —using JUnit 	

Bug: Error in a program.	

Testing: Process of analyzing, running program, looking for bugs.	

Test case: A set of input values, together with the expected output.	

Debugging: Process of finding a bug and removing it.	

Get in the habit of writing test cases for a method from the
method’s specification --- even before writing the method’s body. 	

A feature called Junit in DrJava helps us develop test cases
and use them. You have to use this feature in assignment A1.	

10	

1. w1= new Worker(“Obama”, 1, null);	

	

Name should be: “Obama”; SSN: 1; boss: null. 	

2. w2= new Worker(“Biden”, 2, w1);	

	

Name should be: “Biden”; SSN: 2; boss: w1. 	

To create a testing framework: select menu File item new Junit
test case…. At prompt, put in class name WorkerTester. This
creates a new class with that name. Save it in same directory as
class Worker.	

The class imports junit.framework.TestCase, which provides
some methods for testing.	

Need a way to run these test cases, to see whether the fields
are set correctly. We could use the interactions pane, but then
repeating the test is time-consuming.	

Here are two test cases	

11	

/** A JUnit test case class.	

 * Every method starting with "test" will be called when running	

 * the test with JUnit. */	

public class WorkerTester extends TestCase {	

 /** A test method.	

 * (Replace "X" with a name describing the test. Write as	

 * many "testSomething" methods in this class as you wish,���
 * and each one will be called when testing.) */	

 public void testX() {	

 }	

}	

One method you can use in testX is	

assertEquals(x,y)	

which tests whether expected value x equals computed value y.	

Test case template created by DrJava	

12	

A testMethod to test constructor (and getter methods)	

/** Test first constructor (and getter methods getName,	

 getSSN4, and getBoss) */	

public void testConstructor() {	

 Worker w1= new Worker(“Obama", 123456789, null);	

 assertEquals(“Obama”, w1.getName(),);	

 assertEquals(6789, w1.getSSN4());	

 assertEquals(null, w1.getBoss());	

 Worker w2= new Worker(”Biden", 2, w1);	

 assertEquals(“Biden”, w2.getName());	

 assertEquals(2, w2.getSSN4());	

 assertEquals(w1, w2.getBoss());	

}	

Every time you click button Test in
DrJava, this method (and all other testX
methods) will be called.	

first
test
case	

second
test
case	

assertEquals(x,y): 	

test whether x (expected)
equals y (computed);
print an error message
and stop the method if
they are not equal.	

A few other methods that
can be used are listed on
page 488.	

