
Cornell net id _______ Name (last name in ALL CAPS) ___

 1

CS 1110 Prelim 3 Grades expected to be on the CMS late tonight 14 April 2009

This 90-minute exam has 6 questions (numbered 0..5) worth a total of 100 points. Spend a few minutes
looking at all the questions before beginning. Use the back of the pages if you need more space.

Question 0 (2 points). Fill in your netID and name, legibly, at the top of each page. (Hint: do it now.)

The questions in this exam deal with class BigInt, which implements integers of any size. Type int
has the range -231..231-1, and type long has the range -263..263-1, but some applications require larger
numbers. For example, consider looking for large prime numbers. In 1752, Euler used clever reasoning to
show that 231-1 was prime. In 1876, Lucas showed that 2127-1, which has 39 digits, is prime. But since the
advent of computers, much larger primes have been found. The longest one so far, 12,978,189 digits
long(!), was found in 2008. How does one calculate such things when the basic types int and long are
so restricted? One way is to write a class each instance of which contains an arbitrarily large integer.

We give below the specification of class BigInt, showing many but not all of its methods. For ex-
ample, we show a method to add two BigInts together but no methods for subtracting, multiplying, etc.
You will be asked to write some of these methods. Later in the course, we’ll show how this can be made
far more efficient by allowing larger numbers in each array element numb[i].

Note that there is a constructor for making a BigInt out of an int, but if you add or multiply many
such BigInts together, you may get an integer that is far too big to be in the range of int or even
long. So, we really need methods for adding, subtracting, and multiplying BigInts together.

/** An instance maintains an integer,
 which can be any size. */
public class BigInt {

 /* -1 or 1, depending on whether this
 integer is negative or non-negative. */
 private int sign;

 /* the digits of the absolute value of the integer are

 numb[0..numb.length-1]
 with the least significant digit first.
 E.g. the integer 3124 is stored as {4, 2, 1, 3}.
 numb.length = number of digits in the integer
 with no leading 0’s (0 for integer 0). */
 private int[] numb;

 /** Constructor: an instance with value 0. */
 public BigInt()

 /** Constructor: an instance for integer n. */
 public BigInt(int n)

 /** = number of digits for n, with no leading 0’s. */
 public static int length(int n)

 /** = this integer, as a string. */
 public String toString()

 /** = "b is a BigInt and contains the same
 integer as this one." */
 public boolean equals(Object b)

 /** = 1, 0, or -1 depending on whether this
 BigInt is greater than, equal to, or less than b. */
 public int compareTo(BigInt b)

 /** = 1, 0, or -1 depending on whether the
 absolute value of this BigInt is
 >, =, or < b. */
 private int compareAbs(BigInt b)

 /** = the sum of x and y.
 Precondition: x and y are non-negative. */
 public static BigInt add(BigInt x, BigInt y)

 /** = – x. */
 public static BigInt negate(BigInt x)

 /** = index of minimum of b[h..k].
 Precondition: h <= k.*/
 public static int min(BigInt[] b, int h, int k)

 /** Sort array b, using selection sort. */
 public static void sort(BigInt[] b)

}

Cornell net id _______ Name (last name in ALL CAPS) ___

 2

Question 1 (15 points). Recursion
Function length in BigInt is supposed to calculate the number of digits needed to store an int n
without any leading 0’s. For example, the integer 3712 has four (4) digits. Read carefully the specification
of the fields in class BigInt to understand how many digits are needed to store the integer 0.

Below, write function length recursively —do not use a loop. Remember, it should work for
negative as well as positive integers n.

/** = number of digits for n, with no leading 0’s */
public static int length(int n) {

}

Cornell net id _______ Name (last name in ALL CAPS) ___

 3

Question 2 (23 points). Constructors

Below, write the constructor of class BigInt that has an int parameter. It will need a loop; you
don’t have to write a loop invariant, but doing so may help you get it right. Remember, it should work for
negative as well as positive integers n.

(a)

/** Constructor: an instance for integer n. */
public BigInt(int n) {

}

(b) In the constructor of part (a), you either put super(); as the first statement or you didn’t. Is it legal
to do the opposite of what you chose? If not, explain why not; if yes, explain how or whether doing the
opposite would change the result of the call on the constructor.

(c) Below, write the constructor of class BigInt that has no parameters. The body must have only one
statement: a call on the constructor that has one parameter.

/** Constructor: an instance with value 0 */
public BigInt() {

}

Cornell net id _______ Name (last name in ALL CAPS) ___

 4

Question 3. (20 points). Selection sort
(a) Write procedure BigInt.sort, which is specified below. You must write a selection-sort algo-
rithm. (1) First, write the pre- and post-conditions, as pictures, in mathematical notation, or in English. (2)
Second, develop the loop invariant from the pre- and post-conditions. (3) Third, develop the repetend,
using the four loopy questions. When writing the repetend, in maintaining the invariant, state what has to
be done in one or two statements, written in English. Do not say how anything is done; say what is to be
done. Don’t forget part (b), below.

/** Sort array b, using selection sort */
public static void sort(BigInt[] b) {

}

(b) In part (a), you wrote a loop with a repetend, and the repetend was written mostly in English. Below,
show how to implement those English statements in Java. You can use other methods in class BigInt,
so have a look around at that class on page 1 of this exam.

Cornell net id _______ Name (last name in ALL CAPS) ___

 5

Question 4 (20 points). Using loop invariants
Function add has to add two BigInts (represented in arrays) together, using the standard
addition algorithm. To remind you how this works, we give an example in the box on the
right. For example, 6+4 = 10, so one writes the 0 below the line and writes the “carry”, 1,
at the column to the left of the 6+4 column. Thus, the second-column addition is 1+3+8 =
12, which also produces a carry.

You have to complete the code below. It assumes that x, y, and z are BigInt variables
and that int arrays x.numb and y.numb contain integers. The code adds x.numb and y.numb to-
gether and stores the answer (except for the final carry) in z.numb. Do this in two steps, (a) and (b).

(a) The invariant is given in English. Write the first part of the loop invariant using our pictorial represen-
tation of arrays.

(b) Complete the assignment to variable carry, and, below the invariant, write a single loop (for or
while, whichever you prefer) that performs the addition. Be careful. Arrays x.numb and y.numb may
have different lengths, so don’t try, for example, to reference x.numb[k] if it doesn’t exist.

z.numb= new int[Math.max(x.numb.length, y.numb.length);

carry= ;

// invariant: z.numb[0..k-1] is the sum of x.numb[0..k-1] and y.numb[0..k-1],
// except that the carry into position k is in variable carry (carry is 0 if k is 0).

// postcondition: z.numb contains the sum of x.numb and y.numb,
// except that the carry for the final position is in variable carry.

 1 1
1 3 6
2 8 4
4 2 0

Cornell net id _______ Name (last name in ALL CAPS) ___

 6

Question 5 (20 points). Function equals

(a) Write function equals. Don’t write a loop; instead, look for
another function in BigInt that can do much (but not all) of what is
required.

/** = "b is a BigInt and contains the same integer as this one". */
 public boolean equals(Object b) {

}

(b) Write function equals again, this time using no calls on other methods in class BigInt.

/** = "b is a BigInt and contains the same integer as this one". */
 public boolean equals(Object b) {

}

0 ___________ out of 02

1 ___________ out of 15

2 ___________ out of 23

3 ___________ out of 20

4 ___________ out of 20

5 ___________ out of 20

Total ________ out of 100

