
CS1110 About Prelim II Tuesday evening, 9 November, 7:30--9:00pm;
Last name A-Lewis: Olin 155. Last name Li-Z: Olin 255	

Review session: 1-3PM, Sun, 7 November, Phillips 101.
(Don't forget that clocks get set back one hour that morning!)
The slides will be posted to the course website exams page.

You should know everything that you needed to know for the
first test —we review this material beginning in the next col-
umn. The new material since prelim 1 consists of the follow-
ing topics. You should know this material thoroughly.

Practice by going through the old exams and solutions posted
on the course website. Try your answers in DrJava when ap-
propriate. Students who didn’t do well on prelim 1: try to go to
office hours (or make an appointment) well before the exam
and go over your previous-prelim-2 attempts with a staff
member.

1. Apparent and real types, casting, operator in-
stanceof, and function equals. Study pp. 148–155.
Know how to write a function equals. See the discussion
below under “equals”.

2. Recursive functions. Be able to write recursive func-
tions, as done in class and lab. Know the important
points: (1) precise specification, (2) base case(s), (3)
recursive case(s), and (4) progress toward termination.

3. Abstract classes and methods. Know the purpose of
an abstract class (make a class abstract so that it cannot
be instantiated (presumably for the abstract class to
serve as a superclass for future subclasses)) and how to
make a class abstract. Know the purpose of an abstract
method (make a method abstract so that it must be over-
ridden in any non-abstract subclass) and how to write an
abstract method. See pp. 163–165.

4. for-loops. We may give you a problem that requires
you to write a loop (with initialization) that processes a
range of integers. You should be able to write a post-
condition, write the loop header "for (int k ...)", write a
loop invariant, and finally develop the various parts of
the loops and initialization.

5. while-loops. Know the 4 loopy questions –used for
both while-loops and for-loops. Understand a loop in
terms of those 4 loopy questions. You will not be asked
to write a while-loop.

6. Arrays. Everything on Sects 8.1 and 8.2 of the text
—these pages discuss the technical details for using
arrays in Java and for reasoning about arrays, including
the range notation h..k (where h..h-1 is allowed, and
indicates the empty range). The prelim will not deal
with two-dimensional arrays.

7. Style. We have made comments from time to time on
programming style —using good specifications, class
invariants, indenting, etc. The material on style is pre-
sented in Chapter 13 of the text. You should be familiar

with this material, so read it for the prelim. You will be
especially responsible for Sections 13.3.1–2 on specifi-
cations and Section 13.4 on describing variables.

Concepts and Definitions
Know the following terms, backward and forward. Wishy-
washy definitions will not get much credit. Learn these not by
reading but by practicing writing them down, or have a friend
ask you these and repeat them out loud. You should be able to
write programs that use the concepts defined below, and you
should be able to draw objects of classes and frames for calls.

Argument: An expression that occurs within the paren-
theses of a method call (arguments are separated by
commas).

Casting. Just as one can cast an int i to another type,
using, e.g., (byte) i or (double) i, one can cast a variable
of some class-type variable to a superclass or subclass.
Look in PLive to see about this. See section 4.2.

Calling one constructor from another. In one con-
structor, the first statement must be a call on another
constructor in the same class (use keyword this instead
of the class-name) or a call on a constructor of the su-
perclass (use keyword super instead of the class-name).
If not, the constructor super() {} is inserted by Java.

equals(Object ob). Suppose this instance function is
declared in class C. This boolean function returns the
value of

"ob is the name of an object of class C and is
equal to this object".

The meaning of "equal to this object" depends on the
writer of the method and should be specified in a com-
ment before the function.

In class Object, it means "this object and ob are the
same object". Thus, for the equals defined in Object,
b.equals(d) and b == d have the same value (except in
the case b = null!).

Generally, "equal to this object" means "the fields of
this object and object ob are equal". See p. 154. Method
equals on p. 155 is written incorrectly, because e has to
be cast to Employee in order to reference the fields. It
should be:

/** = "e is an Employee, with the same fields as
 this Employee */
public boolean equals(Object e) {
 if (!(e instanceof Employee))
 return false;
 Employee ec= (Employee) e;
 return name.equals(ec.name) &&
 start == ec.start &&

CS1110 About Prelim II Tuesday evening, 9 November, 7:30--9:00pm;
Last name A-Lewis: Olin 155. Last name Li-Z: Olin 255	

 salary == ec.salary;
 }

Folder. We assume you can draw a folder, or object or
instance of a class. For subclasses, remember that the
folder has more than one partition. Look at the home-
work we had on drawing folders.

Frame for a method call. The frame for a method call
contains: (1) the name of the method and the program
counter, in a box in the upper left, (2) the scope box (see
below), (3) the local variables of the method, (4) the
parameters of the method.

Inheriting methods and fields. A subclass inherits all
the components (fields and methods) of its superclass.

Inside-out and bottom-up rules. Used in determining
which declaration a variable reference or method call
refers to. Look them up in the text.

instanceof. ob instanceof C has the value of "object ob
is an instance of class C". p. 152–153.

Method call execution or evaluation: (1) Draw a
frame for the call (2) Assign the (values of) the argu-
ments to the parameters. (3) Execute the method body.
When a name is used, look for it in the frame for the
call. If it is not there, look in the place given by the
scope box. (4) Erase the frame for the call.

Methods, kinds: procedure, function, constructor:

Procedure definition: has keyword void before the pro-
cedure name. A procedure call is a statement.

Function definition: has the result type in place of void.
A function call is an expression, whose value is the
value returned by the function.

Constructor definition: has neither void nor a type; its
name is the same as the name of the class in which it
appears. The constructor call is a statement, whose pur-
pose is to initialize the fields of a newly created folder.

New-expression. An expression of the form

new <class-name> (<arguments>)

 It is evaluated as follows: (1) create a new object of
class class-name and put it in <class-name>'s file
drawer. (2) Execute the constructor call <class-name>
(<arguments>); the method being called appears in the
newly created object. (3) Yield as the result of the new-
expression the name of the object created in step (1).

Object. Every class that does not explicitly extend an-
other subclass automatically extends class Object. Class
Object has at least two instance methods: toString and
equals.

Overriding a method. In a subclass, one can redefine a
method that was defined in a superclass. This is called
overriding the method. In general, the overriding
method is called. To call the overridden method m (say)
of the superclass, use the notation super.m(...) --this can

only be done in methods of the subclass.

Real and apparent class. A variable x declared using,
say, CLAS x; has apparent class CLAS. The apparent
class is used in determining whether a reference to a
field or method is syntactically legal. One can write
x.m(...), for example, if and only if method m is de-
clared in or inherited by class CLAS. The real class of x
is the class of an object that is in x. It could be a sub-
class. If x.m(...) is legal, then it calls the method that is
accessible in the real class, not the apparent class. pp.
148–154.

Scope box for a call contains: For a static method: the
name of the class in which the method appears. For an
instance method: the name of the object in which the
instance appears.

String methods. Know about the basic String functions
length(), charAt(k), substring(k, j), and substring(k). We
will specify any others that you need.

Variable: a name with associated value OR a named
box that can contain a value of some type or class. For
type int, the value is an integer. For a class, it is the
name of (or reference to) an instance of the class —the
name that appears on the tab of the object.

A variable declaration has the basic syntax: “type vari-
able-name ;”. Its purpose is to indicate that a variable of
the given type is to be used in the program.

4 kinds of variable: parameter, local variable, instance
variable (or field), static variable (or class variable).

1. A local variable is declared in the body of a
method. It is drawn in a frame for a call on the
method —when the frame is created.

2. An instance variable is declared in a class
without modifier static. An instance variable is
drawn in every folder of the class.

3. A parameter is declared within the parentheses
of a method header. The variable is drawn in a
frame for a call on the method —when the
frame is created.

4. A static variable is declared in a class with
modifier static. A static variable is placed in
the file drawer for the class in which it is de-
clared —when program execution starts.

Vector. Be able to use class Vector. On any question
about Vector, we will specify any methods of class Vec-
tor that you need to answer the question --you don't
have to memorize them.

Wrapper class. With each primitive type (e.g. int)
there is an associated wrapper class (e.g. Integer). The
wrapper class serves two purposes: (1) wrap or contain
one value of the primitive type, so the primitive-type
value can be treated as an object. (2) House some useful
methods for operating on values of the primitive type.

