CS 1110
Prelim II: Review Session

11/7/10

Exam Info

* Prelim 1: 7:30-9:00PM, Tuesday, Nov 9t , Olin
155 (Last name starts with A-Lewis) and
Olin 255 (Last name starts with Li-Z)

* Look at the previous Prelims
* Arrive early! Helps reducing stress

Topics

* Recursion

* Class Hierarchy
* Abstract

¢ Arrays

* Loops

* Invariants

(Fall’07) Question 1 (15 points). Write the body of the
following function recursively.

/** = n, but with its digits reversed.
Precondition: n >= 0.
e.g. n = 135720, value is "027531".

e.g. n = 12345, value is "54321".
e.g. n =7, value is "7".
e.g. n =0, value is "O".*/

public static String rev(int n) {

returns a String

Recursive Function 4 Principles

* 1. Write the precise specification

/** = n, but with its digits reversed.
Precondition: n >= 0.

e.g. n = 135720, value is "027531".
e.g. n = 12345, value is "54321".
e.g. n =17, value is "7".

e.g. n = 0, value is "0".*/
public static String rev(int n) {

// base case:

//{n has only one digit}

// recursive case:
// {n has at least two digits}

Recursive Function 4 Principles

* 1. Write the precise specification

* 2. Base Case

11/7/10

/** = n, but with its digits reversed.

Precondition: n >= 0.

e
e. n = 12345, value is "54321".
e.g. n =17, value is "7".

e.g. n = 0, value is "0".*/
public static String rev(int n) {

// base case:

//{n has only one digit}

if (n < 10)

// recursive case:
// {n has at least two digits}

n = 135720, value is "027531".

Let’s review some type issues

What is the type of?

. 42

o« o4 42;

e« ‘a’ 4+ ‘b’

e ‘b’ + "anana"

« ‘b’ + ‘a’ + "nana"

« b’ + (‘a’ + "nana")

« "M 4 ‘b’ 4 ‘a’ 4 "pana"

/** = n, but with its digits reversed.

Precondition: n >= 0.

e
e. n = 12345, value is "54321".
e.g. n =17, value is "7".

e.g. n = 0, value is "0".*/
public static String rev(int n) {

if (n < 10) base case:
return "" + n; n has 1 digit

// recursive case:
// {n has at least two digits}

n = 135720, value is "027531".

Recursive Function 4 Principles

* 1. Write the precise specification
¢ 2. Base Case

¢ 3. Progress

— Recursive call, the argument is “smaller than” the
parameter. Ensures base case will be reached
(which terminates the recursion)

* 4. Recursive case

/** = n, but with its digits reversed.

Precondition: n >= 0.

g. n = 12345, value is "54321".
g. n=7, value is "7".

e.g. n = 0, value is "0".*/
public static String rev(int n) {

if (n < 10)

® o0

return "" + n; n has 1 digit

// n has at least 2 digits recursive case:

return (n%10) + rev(n/10);

.g. n = 135720, value is "027531".

11/7/10

/** = the reverse of s.*/
public static String rev(String s) {
if (s.length() <= 1)

return s;

base case

// { s has at least two chars }

int k= s.length()-1;

return s.charAt(k) +
rev(s.substring(1l,k)) +

s.charAt (0) ;

recursive case

Do this one using this idea:
To reverse a string that contains at
least 2 chars, switch first and last
ones and reverse the middle.

* Class Hierarchy

CS1110 Flix

public class Movie (
private String title; // title of movie
private int length; // length in minutes
/** Constructor: document with title t
and len minutes long */
public Movie(String t, int len) (
title= t; length= len;
)
/%% = title of this Movie */
public String getTitle()
(return title; |
/** = length of document, in minutes */
public int getlength()
{ return length; }
/** = the popularity:
shorter means more popular */
public int popularity()
(return 240 - length;

public class Documentary extends Movie {
private String topic; /

/*¥ Constructor: instance with title t,
length n, and topic p */
public Documentary(String t, int o,
String p) {
supex (t, n);
topic= p;
)

/** = "Documentary" */
public String DocumentaryType ()

{ return "Documentary"; |

/** = popularity of this instance */
public int popularity()
{ return 200 - getlength(); |
)

public class Trailer extends Movie (
/** Constructor: a trailer of movie t.
Trailers are 1 minute long*/
public Trailer(String t)
{super(t, 1);

public class Short extends Documentary
/** Constructor: instance with title t,
length n, and topic p */
public short (String t, int n, String p)
{ super(t, n, p); |

/** displays acknowledgement */
public String showhck ()
{return “We thank our director;}

/** = "Short Doc" */
public String DocumentaryType ()
{ return "Short Doc"; } 6

(Fall’05) Question 4 (30 points) For each pair of statements below,
write the value of d after execution. If the statements lead to an error,
write “BAD” and briefly explain the error. (The question continues on
the next page.)

Documentary e=

new Short ("Man on Wire”, 5, "Bio");
boolean d=

"Short Doc” .equals(e.DocumentaryType())

(Fall’05) Question 4 (30 points) For each pair of statements below,
write the value of d after execution. If the statements lead to an error,
write “BAD” and briefly explain the error. (The question continues on

the next page.)

Documentary e=

new Short ("Man on Wire”, 5, "Bio");

boolean d=

"Short Doc” .equals(e.DocumentaryType());

True . method equals here is from the string object

11/7/10

public class Movie (public class Documentary extends Movie {
private String title; // title of movie private String topic; /
private int length; // length in minutes
/** constructor: document with title t
and len minutes long */

/*¥ Constructor: instance with title t,
length n, and topic p */

public Documentary(String t, int o,
5. public Movie(String t, int len) (string p) {
title= t; length= len; super(t, n);
Movie c= ! ropies pi
/** = title of this Movie */ }
new Documentary (null, 3, "Carter Peace Center"); public String getTitle () e - mentary” */
(return title; } public String DocumentaryType ()
/** = length of document, in minutes */ { return "Documentary"; }
int d= c.popularity(); public int getlength() . .
 roturn 1engths) /*+ = popularity of this instance */

public int popularity()

/7 = the popul { return 200 - getlength();)}

shorter means mo
public int popularity()
(return 240 - length; public class S extends Documentary {
, /** Constru instance with title t,
length n, and topic p */
public Short(String t, imt n, String p)
{ super(t, n, p); |

popular */)

public class Trailer extends Movie (/** displays acknowledgement */
/** Constructor: a trailer of movie t. public String showhck()
{return “We thank our director;}

Trailers are 1 minute long*/
public Trailer(String t) /4% = "Short Doc */
(supex(t, 1); public String DocumentaryType ()
5) { return "Short Doc"; }

B L

a0
2.
Animal
agelil m Movie c=

QUESTION: Which method is called by ArgEal(itr[ng,lint) new Documentary(null, 3, "Carter Peace Center");
Animal t= new Cat(*A”,5); t.toString()? | 'SC/der(Animal) int d= c.popularity();
A. the one in the hidden partition for C""ttlflsfri”?)' i"t)lﬁ

Object of a0 getlNoise

) toString() Movie
B. the one in partition Animal of a0 getWeight()
[C. the one in partition Cat of a0 | Documentary Trailer
D. None of these
Object Short
Animal * What is the apparent class?
isiclasslierarch . * Answer: 197. method popularity of
Cat class Documentary is called
2 2
3. 3.
Short b= (Short) (new Documentary("", 2, "WMD")); short b= (Short) (new Documentary (", 2, "WMD"));
int d= b.DocumentaryType () .length () ; int d= b.DocumentaryType () .length();
Movie

mmm===) Documentary Trailer
Short

*From documentary, can go (cast) up and back down
to documentary.

*Think what would happen for the call b.showAck()

11/7/10

3
Short b= (Short) (new Documentary("", 2, "WMD"));
int d= b.DocumentaryType () .length();
Movie
mmmmm=) Documentary Trailer
Short

« From documentary, can go (cast) up and back down
to documentary.

« Think what would happen for the call b.showAck().

« Answer: BAD

4.
Movie a= (Movie) (new Trailer ("Harry Potter"));

int d= a.popularity();

Movie
Documentary Trailer e

Short

* The cast is legal!
* Which popularity() method is called?

4.
Movie a= (Movie) (new Trailer ("Harry Potter"));

int d= a.popularity();

Movie
Documentary Trailer e
Short

¢ The cast is legal!
* Method popularity() from Trailer is called (inherited by Trailer)

5.
Movie f= new Short("War", 1, "Vietnam");
char d= f.DocumentaryType ().charAt(1l);

The methods that can be called are determined by
the apparent type:

Only components in the apparent class (and above)!!!

5.
Movie f= new Short ("War", 1, "Vietnam");
char d= f.DocumentaryType ().charAt(l);

The methods that can be called are determined by
the apparent type:

Only components in the apparent class (and above)!!!

f.DocumentaryType() is illegal. Syntax error.

Answer: BAD

Recap: equals(Object ob)

* In class Object
— b.equals(d) is the sameasb==d
* Unless b == null (why?)
* Most of the time, we want to use equals to
compare fields. We need to override this
method for this purpose

11/7/10

(Fall’05) Question 4 (24 points). (a) Write an instance method equals
(Object obj) for class Documentary

public class Documentary extends Movie {
/** = "obj is a Documentary with the same values
in its fields as this Documentary" */

public boolean equals (Object obj) {

public class Documentary extends Movie {
/** = "obj is a Documentary with the same values
in its fields as this Documentary" */

public boolean equals (Object obj) {

if (! (obj instanceof Documentary) {

public class Documentary extends Movie {
/** = "obj is a Documentary with the same values
in its fields as this Documentary" */

public boolean equals (Object obj) {

if (! (obj instanceof Documentary) {

return false;

public class Documentary extends Movie {
/** = "obj is a Documentary with the same values
in its fields as this Documentary" */

public boolean equals (Object obj) {

if (! (obj instanceof Documentary) {
return false;

}

Documentary docObj= (Documentary)obj;

Don’t forget to cast.
This is a legal cast. (Why?)

public class Documentary extends Movie {
/** = "obj is a Documentary with the same values
in its fields as this Documentary" */

public boolean equals (Object obj) {

if (! (obj instanceof Documentary) {
return false;
}

Documentary docObj= (Documentary)obj;
return
getTitle () .equals (docObj.getTitle()) &&
getLength () == docObj.getLength() &&

topic.equals (docObj.topic);

* Abstract Classes

Let’s capture the essence of animals

/** representation of an animal */

public class Animal {
private int birthDate; // animal’s birth date
private String predator; // predator of this animal
private String prey; // class of animals this hunts

// move the animal to direction..

public void move (..) {

: ‘n

// make the animal eat..

public void eat (..){ ﬁ

e el
&hﬁﬂlﬂ

» YR

""(4

11/7/10

Problems

¢ Animal is an abstract concept

— Creating an abstract animal doesn’t make sense in the real
world

— Dogs, cats, snakes, birds, lizards, all of which are animals,
must have a way to eat so as to get energy to move

* However...

— Class Animal allows us to create a UFA (unidentified flying
animal), i.e. instance of Animal

— If we extend the class to create a real animal, nothing

prevent us from creating a horse that doesn’t move or eat.

Solutions

* How to prevent one from creating a UFA?
— Make class Animal abstract
* Class cannot be instantiated
— How? Put in keyword abstract

* How to prevent creation paralyzed dogs or starving sharks?
— Make the methods move and eat abstract
* Method must be overridden
— How? Put in keyword abstract and replace the body with ";"

Making things abstract

/** representation of an animal */

public abstract class Animal{
private int birthDate; // birth date
private String predator; // animal’s predator
private String prey; // What animal hunts

// Move the animal move in direction

public abstract void move (..);

// Make the animal eat..
public abstract void eat (..);

¢ Arrays

Array: object

Can hold a fixed number of values of the same type.

The type of the array:

N
2]
=

o |o |o o

int]] 2
String[]
Integer(] 3
Basic form of a declaration: int[] x
Does not create array, it only declares x. x’s initial X
value is null. lElm':[]

Array creation: new int[4]

Assignment: int[] t= new int[4] t int[]

Elements of array are numbered: 0,1,2, ..., xlength-1;

Array: length 20
length 4
Array length: an instance field of the array. 0 g 5 u
This is why we write x.length, not x.length()
7

Length field is final: cannot be changed. 1 4
Length remains the same once the array has been 2
created. 2

3

The length is not part of the array type.
The type is int[]
An array variable can be assigned arrays of different lengths.

int[] x;
x= new int[4];
Xx= new int[32];

int[] x; X @ int] Arrays

Difference between Vector and array

Declaration: int[] a; Vector v;
Elements of a: int values Elements of v: any Objects

Creation: a= new int[n]; v= new Vector();
Array always has n elements Number of elements can change
Reference: ale] v.get(e)

Change element: a[e]=e1; v.set(e, e1);

a0
X= new int[4]; Create array object of length 0 0
4, store its name in x 0
1 0
CE
x[2]= 5; Assign 5 to array element 2 and a0
X[0]= -4; -4 to array element 0 8 -4
0
X[2] is a reference to element 1 5
number 2 of array x 0
2
int k= 3; a0
x[K]= 2 X[0; Assign 2*X{0], i.e. -8, to x[3] 8] 4
x[k-1]=6; Assign 6 to x[2] 0
1 6
-8 a
2
Array initializers
Instead of

int[] c= new int[5];
c[0]= 5; c[1]= 4; c[2]= 7; c[3]= 6; c[4]= 5;

Use an array initializer:
int[] c= new int[] {5, 4, 7, 6, 5};

2|
=
oo (N[~ o

Array locations a[0], a[1], ... in

successive locations in memory.

Access takes same time no

matter which one you reference.

Elements all the same type (a
primitive type or class type)

Can't tell how Vectors are stored in
memory. Referencing and changing
elements done through method
calls

Elements of any Object type (but
not a primitive type). Casting may
be necessary when an element is
retrieved.

T

list

array initializer: values must have the
same type, in this case, int. Length of
the array is the number of values in the

Question 3 (20 points)

a) Consider the program segment below. Draw all variables (with
their respective values) and objects created by execution of this

program segment.

int[] z= new int[]

2, 1};

String[] s= new String[2];

z= new int[2];

b) Give an expression to reference the second element of z.

c) What is the result of the expression s[1].1length () after the

execution of the code above?

d) Give the declaration of a single variable v to store the values “1”

and “Hi” at the same time.

Execution of the for-loop

The for-loop:
for (int i= 2; i <= 200; i= i +1) {
X=X+ i*i;

}

false

et |

l Called a “flow chart”

loop counter: i

increment: i=i+1
repetend or body: { x=x +i; }

To execute the for-loop.

1. Execute initialization.

2. Ifloop condition false,
terminate execution.

3. Execute repetend.

4. Execute increment,
repeat from step 2.

Note on ranges.

2..5 contains 2, 3,4, 5. It contains 5+1 — 2 = 4 values
2..4 contains 2, 3, 4. It contains 4+1 — 2 = 4 values
2..3 contains 2, 3. It contains 3+1 — 2 = 2 values

2.2 contains 2. It contains 2+1 — 2 = 1 values

The number of values in m..n is n+1—m.

2.1 contains . It contains 1+1 — 2 = 0 values
3.1 contains . This is an invalid range!

In the notation m..n, we require always, without saying it, that
m<=n+1 .

If m=n+1, the range has 0 values.

11/7/10

Invariants

Assertions: true-false statements (comments) asserting your
beliefs about (the current state of) your program.

// x is the sum of 1..n <- asserts a specific relationship
between x and n

Invariant: an assertion about the variables that is true before
and after each iteration (execution of the repetend).

Finding an invariant

/I Store in double variable v the sum
AN +12+1/3+1/4+1/5+ ... +1n

v=0;

/l'invariant: v = sum of 1/i foriin 1..k-1

for (intk= 1; k <= n; k=k +1) {
Process k;

}
IIv=11+1/2+ N+ 1n

The increment is executed after

the repeted and before the next
iteration

What is the invariant? 123 ...k1Tkk+1...n

Command to do
something and

equivalent
postcondition

Questions

