LASTNAME GRIES first name David Cornell Net id djgl7

Question 1. /** See prelim for the spec. */ Question 4.
public static Vector<Person> frenemies(

Vector<Person> friends, Vector<Person> enemies) { Two possible solutions.

Vector<Person> fr= new Vector<Person>();

) -) S) The first follows the general object-oriented principle
/* inv: fr is a list of Persons in friends[0..i-1]

of making method laysEggs() abstract in order to force

that also appear in enemies. */
for (int i= 0; i < friends.size(); i= i+1) {
Person f= friends.get(i);
if (enemies.contains(f)) {
fr.add(f);

/* R: fr is a list of Persons in
friends[0..friends.size()-1] that
also appear in enemies. */

return fr;

}

Question 2. /** See prelim for the spec. */
public static boolean malePathTo(
Vector<Person> ignore,
Person startP, Person endP) {
// base case: length-0 path
if (startP == endP)
{ return true; }

Person mbf= startP.getMBF();

// base case: path ends too soon to contain endP
if (mbf == null) {
return false;
H

// recursive case: check path lengths >=1
ignore.add(startP);
if (ignore.contains(mbf)) {

return false;

// mbf not in ignore, so spec is satisfied
return malePathTo(ignore, mbf, endP);

h

Question 3. (a) (the legal ones are in boxes):

vm(5) fw.m(5) [vpO w.p()

(b) (D) v).pO)

(c)/** ="p is a Person, with same best female
friend and best male friend as this person."
Best friends that are "null" are the same

(so two Persons with no best friends are
equal). But this.equalsX(null) is false. */

public boolean equalsX(Object p) {
if (!(p instanceof Person))
{ return false; }

Person newp= (Person)p;

return newp.mbf == mbf && newp.fbf == {bf;

all subclasses to override it:

/** An instance is a Mammal */

public abstract class Mammal {

}

private String[] noises; // list of noises this
// Mammal can make. Never null

/** Constructor: a Mammal that makes the
sounds listed in noises.
Precondition: noises is not null
(it can be size 0). */
public Mammal(String[] noises) {
this.noises= noises;

}

/** = the ith kind of noise this Mammal can
make or the String "no such noise" if the
Mammal makes fewer than i noises.

Precondition: 1 <=1. */

public String getNoise(int i) {

// recall: the ith element of an array is
/ stored in entry i-1 (if it exists)
int e=1i-1;
if (e >= noises.length)

{ return "no such noise"; }
else { return noises[e]; }

}

/** = "this Mammal species lays eggs */
public abstract boolean laysEggs();

/** See prelim for the spec. */
public class Dog extends Mammal {

nn

private String breed; // Dog’s breed. Not null or
private static String[] nArr= {"woof", "arf"};
/** Constructor: a new Dog of breed b.
Precondition: b has length >0. */

public Dog(String b) {

super(nArr);

breed=b;
§

/** = breed of this dog */
public String getBreed() {
return breed;

b
// SEE OVER

/** ="this species lays eggs" */

public boolean laysEggs()
{ return false; }

LAST NAME GRIES first name David Cornell Net id

/** An instance is a Platypus, a silent mammal that lays
eggs. */
public class Platypus extends Mammal {

private static String[] nArr= {}; // platypi are silent

/** Constructor: a new platypus */
public Platypus()
{ super(nArr); }

/** = "this species, platypus, lays eggs" */
public boolean laysEggs()
{ return true; }

In the second solution, we decide to violate the general
object-oriented principle in the particular case of
Mammal because almost every subclass should have
the exact same implementation of laysEggs(): so, we
decide instead to encode the default behavior of
laysEggs() in Mammal, making it the responsibility of
subclass authors to override the default behavior.

Thus, in this solution, laysEggs would be a non-abstract
method in Mammal that always returns false, and Dog
would not have a laysEggs method. The Platypus
laysEggs method remains as is.

djgl7

