
Why provide more than one constructor?

public Organism(int lev, int m, String nn) { …}

Sec. 3.1.3,

page 110Doing so is better for the user.

From A1 (we assume you remember the specs):

So, the user can write new Organism(4) instead of

new Organism(4, 0, null).

public Organism(int lev) { …}

1

public Organism(int lev) {

Organism(lev, 0, null);

}

For the programmer,

it’d be great to have the one-parameter constructor call the other:

We wish we could say this!
But you HAVE to do it “this” way. Here,

this refers to the other constructor.

this(lev, 0, null);

Issues related to sub-classes

The ability to extend existing subclasses to reuse/refine existing behavior is a terrific

aspect of object-oriented programming.

Example: modeling sulfur bacteria as photosynthesizing organisms that come in purple

or green variations.

a0

Object
equals(Object) toString()

sb a0

(Thank you, Wikipedia.)

2

level 0

SBact(String) getColor()

eat(Organism) toString()

equals(Object) toString()

Organism

SBact
color “green”

eat(Organism) toString() getLevel()

Organism(int) Organism(int, int, String)

…

…

We want sb.eat(victim) to have the

effect appropriate for sulfur bacteria

(i.e., nothing happens) rather than

the effect appropriate for generic

Organisms.

[Program and tester will be posted to the course website.]

For the call sb.eat(v), which

method eat is called?

Overriding rule or

bottom-up rule:

Start at the bottom of the folder

and search upward until a

Sec. 4.1,

page 142

sb a0

a0

Object

level 0

equals(Object) toString()

Organism

SBact

eat(Organism) toString() getLevel()

Organism(int) Organism(int, int, String)

…

…

…

3

and search upward until a

matching method is found.

Terminology. SBact inherits methods and fields from Organism. Sbact overrides

eat and toString.

SBact(String) getColor()

eat(Organism) toString()

SBact
color “green”

Purpose of super and this

Suppose we’re overriding a method in order to modify it just a bit; so,

we’d like to refer to the overridden method.

The word super refers only to components in the partitions above it.

Sec. 4.1, pages 144-145

a0

Object

level 0

equals(Object) toString()

Organism

Organism(int) Organism(int, int, String)
…

…

/** = String like A3 requires for

Organism, but with

“<green/purple> SBact. ” in front.

*/

public String toString() {

4

SBact(String) getColor()

eat(Organism) toString()

SBact
color “green”

eat(Organism) toString() getLevel()

Organism(int) Organism(int, int, String)

…

…

this refers to the name of the object in which it appears.

We could have written this.getColor(), but it wasn’t necessary to.

public String toString() {

return getColor()

+ “ SBact. “

+ super.toString();

}

Calling (reusing) a superclass

constructor from the subclass

constructor

public class SBact extends Organism {

private String color;

/** Constructor: A sulfur bacterium of color c

[etc. Full program will be posted.]*/

public SBact(String c) {

super(0); /* default Org. values,

* lowest level */

color= c;

}

}
The first (and only the first) statement

Sec. 4.1.3, page 147

a0

Object

level 0

equals(Object) toString() …

Organism…

…

5

}
The first (and only the first) statement

in a constructor has to be a call to a

constructor of the superclass. If you

don’t put one in, then this one is

automatically used:

super();

This corresponds to a natural principle: Fill in superclass fields first.

level 0

SBact(String) getColor()

eat(Organism) toString()

Organism

SBact
color“green”

eat(Organism) toString() …

Organism(int)

…

…

Non-abstract vs. Abstract

abstract

abstract ;

Non-abstract vs. Abstract

