
12/6/10

1

Review Session Topics

  Invariants
 Subclasses & Constructors
 Abstract

Why Class Invariants ?

  A class invariant is a condition that defines all valid
states for an object.

  It is a logical condition to ensure the correct working of a
class.

  Class invariants must hold when an object is created,
and they must be preserved under all operations of the
class.

  In particular all class invariants are both preconditions
and post-conditions for all operations or member
functions of the class.

Example

public class Time {
 private int hr;

 private int min;

public Time(int t) {
 hr= t / 60;
 min= t % 60;
}

}

/** An instance is a time of day */
public class Time {
 private int hr; // Hour of the day, in range 0..23
 private int min; // minute of the hour, in range 0..59

/** Constructor: an instance with time t, in minutes, in range 0..24*60-1*/
public Time(int t) {
 hr= t / 60;
 min= t % 60;
}

}

Constructors ??

  A java constructor has the same name as the name
of the class to which it belongs. Constructor’s syntax
does not include a return type, since constructors never
return a value.

  Constructors may include parameters of various types.
When the constructor is invoked using the new operator,
the types must match those that are specified in the
constructor definition.

  Java provides a default constructor which takes no
arguments and performs no special actions or
initializations, when no explicit constructors are provided.

12/6/10

2

Constructor Overloading

  public Organism(int lev, int m, String nn)
{ …}

  public Organism(int lev) { …}

 So, the user can write new Organism(4)
instead of new Organism(4, 0, null).

Which is the correct form?

1. public Organism(int lev) {
 Organism(lev, 0, null);
}

2. public Organism(int lev) {
 this(lev, 0, null);
}

public class Cube1 {

 int length, breadth, height;
 public int getVolume() {
 return (length * breadth * height);
 }
 Cube1() {
 length = 10;
 breadth = 10;
 height = 10;
 }
 Cube1(int l, int b, int h) {
 length = l;
 breadth = b;
 height = h;
 }
 public static void main(String[] args) {
 Cube1 cubeObj1, cubeObj2;
 cubeObj1 = new Cube1();
 cubeObj2 = new Cube1(10, 20, 30);

 System.out.println("Volume of Cube1 is : " + cubeObj1.getVolume());

 System.out.println("Volume of Cube2 is : " + cubeObj2.getVolume());
 }

}

Example - fall 2006

  Question 5 (21 points). Consider the classes provided below and
answer the following questions.

  (a) In class Positive, write the body of the constructor.
(b) In class Rational, write the bodies of the constructor
and procedure setPositive. In doing these, keep in mind
that the rational number must always be maintained with
the denominator > 0 and in lowest possible terms ‚Äîe.g.
the rational number 15/45 is maintained as 1/3 and
25 /15 as 5/3.
(c) Explain why class Rational overrides procedure
setPositive

Question
public class Positive{
 private int k;

 public Positive (int k) {

 }
public int getPositive() {
}

public void setPositive(int n){
}

}

Solution
/** An instance wraps a positive integer */
public class Positive{
 private int k; // the positive integer

 /** Constructor: an instance with value k.
 Precondition: k > 0 */
 public Positive (int k) {

 this.k = k;
 }

 /** = this instance's value */
 public int getPositive() {
 return k;
 }

 /** Set the value of this instance to n.
 Precondition: n > 0 */
 public void setPositive(int n){
 k= n;
 }
}

12/6/10

3

(b) In class Rational, write the bodies of the constructor and procedure
setPositive. In doing these, keep in mind that the rational number
must always be maintained with the denominator > 0 and in lowest
possible terms ‚e.g. the rational number 15/45 is maintained as 1/3
and 25 /15 as 5/3.

public class Rational extends Positive {
 private int num;

 public Rational(int num, int denom) {

 }

 public void setPositive(int n){

 }

 public void reduce(){
 }
}

/** An instance is a rational number */
public class Rational extends Positive {
 /** The rational number is num / k, where k is the value wrapped by the super class.
 Restrictions on fields: k is always > 0 and num / k is always in lowest possible

terms.
 E.g. instead of 10/5 or ‚5/10, these numbers are stored as 2/1 and ‚1/2. */
 private int num;
 /** Constructor: an instance with rational number num / denom.
 Precondition: denom != 0 */
 public Rational(int num, int denom) {

 }
 /** Set the value of the denominator to n.
 Precondition: n > 0 */
 public void setPositive(int n){

 }
 /** Reduce this rational number to the lowest
 possible terms, e.g. 8/24 becomes 1/3 */
 public void reduce(){
 }
}

Subclasses

 The ability to extend existing subclasses to
reuse/refine existing behavior is a terrific
aspect of object-oriented programming.

Abstract Class ?

 Why make a class abstract?

Definition

  An abstract class is a class that is
declared abstract—it may or may not include
abstract methods. Abstract classes cannot be
instantiated, but they can be subclassed.

  An abstract method is a method that is declared
without an implementation (without braces, and
followed by a semicolon), like this:
 abstract void moveTo(double deltaX, double deltaY);

Note

  If a class includes abstract methods, the class
itself must be declared abstract, as in:

  public abstract class GraphicObject {
 // declare fields

 // declare non-abstract methods
 abstract void draw(); }

  When an abstract class is subclassed, the subclass
usually provides implementations for all of the abstract
methods in its parent class. However, if it does not, the
subclass must also be declared abstract.

12/6/10

4

 Questions.

