
1

First Model, then Function
 on the value of objects

Online course evaluations are starting

Completion counts toward
your course grade like a quiz

Just before the final, we get a
list of students who completed it.

Don’t see actual evaluations
until grades have been submitted

CS1110. Lecture 27. OO programming

First Model, then Function
 on the value of objects

Gries’s revision of lecture by
Michael E. Caspersen

University of Aarhus
Denmark

The foundation of the system
should be a model of

relevant concepts and phenomena
from the problem domain

Object-oriented design

People at a university. Organize into categories

Cornell University, CS1110, Spring 2009

university member
 student
 grad
 undergrad
 nondegree
 faculty
 prof
 …
 staff
 …

is-a relation
Make B a subclass of C is every
instance of B is a C

Subclass principle
Structure classes so that behavior
common to several classes can be
defined in a superclass of those
classes

The foundation of the system should be a model of
relevant concepts and phenomena from the problem domain

Cornell University, CS1110, Spring 2009

Overview

–  One problem

–  Two solutions: a bad and a good

–  Very black and white

–  Exaggeration promotes understanding

Function first, or model first?

Cornell University, CS1110, Spring 2009

The Coming of Showboat Inc., (2)

B o a t h i r i n g b y t h e m i n u t e

Cornell University, CS1110, Spring 2009

Showboat Inc. and Contractors

Daniel von Schneider Sailor Sam

own,
manage

company

At the beach,
rent out boats

John H. Acker

freelance
programmer

Scarlett Olivia Oakley Patton
(Scoop)

promising
employee
of software
firm

2

Cornell University, CS1110, Spring 2009

Requirements

•  von Schneider requests a decision support system for
strategic planning

•  The system must be able to deliver a daily report
–  number of sessions (hires) of the day
–  average duration of each session

•  von Schneider asks for bids ... John H. Acker wins

Cornell University, CS1110, Spring 2009

Function First

•  John H. Acker is smart, very smart!

•  Realizes he can get by with a two-variable state space
–  n: number of finished sessions
–  totalTime: sum of duration of finished session

•  Maintaining n is easy
–  finish a session? Increment n

•  Maintaining totalTime is less trivial...

Cornell University, CS1110, Spring 2009

“Clever” Calculations...
si: start time for session i
ei: end time for session i
duration of session i: (ei - si)

 totalTime
= { definition }

 (e1 - s1) + (e2 - s2) + ... + (en - sn)
= { remove parentheses }

 e1 - s1 + e2 - s2 + ... + en - sn
= { re-ordering }

 e1 + e2 + ... + en - s1 - s2 - ... - sn

Start of session: totalTime = totalTime - currentTime
End of session: totalTime = totalTime + currentTime

Cornell University, CS1110, Spring 2009

Use of the System

von Schneider Sailor Sam

Start End Day over

C o n t r o l p a n e l

* S H O W B O A T Inc *

Daily Report 21 Apr 2008 22:29

Number of Sessions: 5
Average rental time: 00:12:02

Cornell University, CS1110, Spring 2009

J. H. Acker’s Software Architecture

User Interface

System Functions
beginSession endSession
DailyReport

Model

Time

run printDailyReport Time:
general class in a class library;

not domain specific

Time
Time ()
Time (int t)
Time add (Time t)
Time subtract (Time t)

...
Time divide (int n)

 t0

Cornell University, CS1110, Spring 2009

System Functions

public void beginSession () {
 Time now= new Time();
 totalTime= totalTime.subtract(now);
}

public void endSession () {
 Time now= new Time();
 totalTime= totalTime.add(now);
 n= n + 1;
}

public void doDailyReport() {
 Time avgTime;
 if (n != 0) avgTime= totalTime.divide(n);
 else avgTime= new Time(0);
 printDailyReport(n, avgTime);
}

private int n= 0;
private Time totalTime= new Time(0);

System state

3

Cornell University, CS1110, Spring 2009

User Interface

public static void run() {
 char command= '.';
 int sessionNr= 0;

 command= getChar();
 while (command != '.’) {
 if (command == 's')
 f.beginSession();
 if (command == 'e')
 f.endSession();
 command= getChar();
 }
 printDailyReport(f.doDailyReport());
}

Cornell University, CS1110, Spring 2009

Two Months Later
•  von Schneider is pleased with system but quickly gets new ideas...

•  von Schneider asks John H. Acker to make a few harmless
extensions to the daily report to make it more ... interesting:

–  duration of the longest session of the day
–  an extra report at noon
–  distribution of load during the day
–  ...

–  the maximum number of concurrent sessions

:-(
:-(
:-(
:-(:-(:-(

:-)

John H. Acker Rules No More

Cornell University, CS1110, Spring 2009

Scarlett Olivia Oakley Patton’s
Object-Oriented Perspective
•  John H. Acker’s system: developed solely by focusing on functional

requirements of the system

•  No software representation of concepts and phenomena in the
problem domain

•  Foundation of system should be a model of relevant concepts
and phenomena from the problem domain

•  Relevance: determined by the requirements specification

•  But what are the relevant concepts...?

Cornell University, CS1110, Spring 2009

The Key Concept: Session
•  Relevant concepts: found in
 requirements spec

(functional requirements)
–  no. sessions (hires) per day
–  average session duration

•  Both requirements expressed
 in terms: session
•  Central property of a session
 duration

•  Must be able to start and
stop a session

•  Must be able to identify
sessions (unique id)

class Session {
 /** Constr: session with id n,
 start/stop times of 0 */
 public Session (int n)

 /** = session id */
 public int id()

 /** Start session now */
 public void start()

 /** End session now */
 public void stop()

 /** = duration of session.
 Pre: session is stopped */
 public Time duration()
}

Cornell University, CS1110, Spring 2009

Session Objects
A session object for each unfinished session:

t

s1 e2 s2 s3 s4

no: 1
startTime: 10
stopTime: -

no: 2
startTime: 11
stopTime: 14

no: 3
startTime: 15
stopTime: -

no: 4
startTime: 17
stopTime: -

Bag current;

Cornell University, CS1110, Spring 2009

Use of the System

von Schneider Sailor Sam

* S H O W B O A T Inc *

Daily Report 21 Apr 2008 22:29

Number of Sessions: 5
Average rental time: 00:12:02

Start End Day over

C o n t r o l p a n e l

1 2 3
4 5 6
7 8 9
 0

4

Cornell University, CS1110, Spring 2009

Scarlett’s Software Architecture

User Interface

System Functions
beginSession endSession doDailyReport

Model

Session

run printDailyReport

Time Bag Report

Cornell University, CS1110, Spring 2009

User Interface
public static void run() {
 char command= '.';
 int sessionNo= 0;

 command= getChar();
 while (command != '.’) {
 switch (command) {
 case 's': case 'S':
 sessionNo++; f.beginSession(sessionNo); break;
 case 'e': case 'E':
 showStatus();
 int no = getInt(); f.endSession(no); break;
 default: ;
 }
 command= getChar();
 }
 printDailyReport(f.doDailyReport());
}

As before (almost)

Cornell University, CS1110, Spring 2009

System Functions

public static void
 beginSession(int n) {
 …
}

n: 2
startTime: 11
stopTime: -

s:

currentSessions

1

no: 2
startTime: 11
stopTime: 14

s:

currentSessions

1

3
4

public static void
 endSession (int n) {
}

doDailyReport()
is as before

Cornell University, CS1110, Spring 2009

Bag

Bag is a general class in a class library;
like Time, it is not a domain specific class

Bag Bag()
boolean isEmpty()
boolean member(Session s)
void insert(Session s)
void remove (int id)

...
Session lookup(int id)

b0

An object, from
pt of view of

the user

Cornell University, CS1110, Spring 2009

Two Months Later
•  von Schneider is pleased about the system but quickly starts

getting new ideas...

•  Calls Scarlett OOP and asks her to make a few harmless
extensions to the daily report to make it more ... interesting:

–  duration of the longest session of the day
–  an extra report at noon
–  distribution of load during the day
–  ...

–  the maximum number of concurrent sessions

:-)
:-)
:-)
:-) :-) :-)

:-)

Cornell University, CS1110, Spring 2009

Scarlett Olivia Oakley Patton Still Rules

more static more dynamic

Interface
Component

(View)

Function
Component

(Controller)

Model
Component

(Model)

A (logical) Three Tier Architecture

