
CS1110 Lab 03. Writing and testing classes Spring 2009

Playing with static variables

Name _______________________________ NetId ____________________________

This lab gives you practice with writing a class, using a JUnit tester, and working with static methods.

Task 1. Download. Download file ThreeDimPoint.java from here:

http://www.cs.cornell.edu/courses/cs1110/2009sp/handouts/labs/lab03program/ThreeDimPoint.java.

Save it in a new directory. Each instance of class ThreeDimPoint is a three-dimensional point (x, y, z).
When you are done with this lab, you may want to save this file —email it to yourself.

Task 2. Examine the beginning of class ThreeDimPoint. It has three variables, x, y, and z, a constructor, and
three getter functions. Understand what those four methods are supposed to do FROM THEIR
SPECIFICATIONS. Don't look at the bodies yet.

Task 3. Create a test class and test the constructor and three getter functions. We'll tell you now: the
methods have errors in them. DO NOT LOOK FOR THEM AND FIX THEM IN THE BEGINNING. (The point
of this lab is not to fix this particular class definition, but to get you in the habit of testing your programs. Trust
us: adopting this testing habit will prove to be unbelievably useful.) Instead, create a JUnit test class and test the
four methods; use the tests to discover bugs and then fix the bugs. Continue testing until your test cases don't give
error messages. Here's what to do:

1. In DrJava, select menu File item New JUnit Test Case.... This will create a second file; call
it DimTester.java. Save it.

2. Change the name of method testX in class DimTester to testGetters, and change the
(javadoc) comments appropriately.

3. In the body of method testGetters, write Java statements that:

(a) Create an instance of ThreeDimPoint and save its name in a variable. Note that the
constructor call in the new expression requires three integer arguments --the x, y, and z
coordinates of the point.

(b) Test the three getter methods. Refer to the slides for the lecture of 3 February for help.
Remember, inherited procedure assertEquals(expected, computed) stops all
testing and outputs an error message if expected does not equal computed.

4. Compile the two classes, by clicking your mouse on button Compile.
5. Click button Test.
6. If an error message results, study the message and the constructor and the relevant getter function to

determine what is wrong and fix the ThreeDimPoint class definition.

Repeat steps 4, 5, and 6 until no error message results.

Congratulations! You have used a JUnit tester to debug your first program.

Task 4. Test function hasAZero. This function is supposed to return true if at least one of the x-coordinate,
y-coordinate, and z-coordinate is 0. If none of them are zero, it returns false. That's what the specification
says. Do not make any changes to the function before testing it. In class DimTester, make up another test
function, testHasAZero, that will test function hasAZero. A possible test case is any set of values (x, y, z).
Think about it: how many test cases do you need in order to be sure that the method is correct? Perhaps 6
or 7 or 8? Below, write down a list of test cases that you think will suffice to provide some assurance that
the function is correct:

file:///Volumes/Work15A/CS1110Spring2009/handouts/lectures/05-09feb03static.pdf
file:///Volumes/Work15A/CS1110Spring2009/handouts/labs/lab03program/ThreeDimPoint.java

In test procedure testHasAZero, implement all the test cases that you think you need. The test procedure
may have to create more than one instance of ThreeDimPoint in order to implement all your test cases.

Now compile the test program (click button Compile) and run it (click button Test). If you get error
messages, look at the program and fix errors. Continue testing and debugging in this fashion until running
the test program does not produce an error.

Task 5. Trying to make a method static. The length of the line from point (0, 0, 0) to point (x, y, z) is the
square root of x*x + y*y + z*z. In Java, function call Math.sqrt(n) finds the square root of n, as you can
see from method length in class ThreeDimPoint. Method length computes the length of the line from the
origin given by the instance in which it appears. Try it out using these two statements in the Interactions
pane:

d= new ThreeDimPoint(3, 4, 5);
d.length() // Write the answer here:

Now do the same thing using this single statement.

(new ThreeDimPoint(3,4,5)).length() // Write the answer here:

The second way, just above, contains a new-expression that is NOT assigned to a variable. This is legal.
There is nothing wrong with it. The new folder (object) is created and stored in file-drawer
ThreeDimPoint, and the name of the folder is the result of the new-expression; then, function length() of
that folder is called.

Now, make the function static by placing the word static right after public and compile. What happens?
Write here the error message that is printed:

What is the problem? Explain in your own words what the problem is:

Then remove the word static and compile again.

Task 6. Making a method static. Now consider function length1. It has the heading

public double length1(ThreeDimPoint c)

so when one calls it, one has to give it an argument that is the name of a ThreeDimPoint folder. We'll
show you this in a minute.

Make this method static, by placing keyword static after public, and compile. It works! Can you
explain why?

Yes, the method does not refer directly to any fields of the object in which the method occurs, so it does
not have to be in each folder of the class, so it can be static. There is ONE copy of it, and the copy is in
file-drawer ThreeDimPoint.

Now do these two lines in the interactions pane, one at a time. The first creates a ThreeDimPoint folder
and stores its name in variable f. The second gets its length by calling function length in object f. The third
gets its length by calling static function ThreeDimPoint.length1.

f= new ThreeDimPoint(3,4,5);
f.length()
ThreeDimPoint.length1(f)

This illustrates how one can use a static method. If a method does not refer to any fields, place it in the
file-drawer by making it static. If you still have questions about this, ASK THE TA OR CONSULTANT!

Task 7. Class Math. Class Math has lots of static functions that are mathematical in nature. Class Math,
which is always available (can always be used), is used mainly as a file-drawer for static functions and
variables. It has no fields that you can change. It has no methods. Everything in it is static. Here are some
function calls and what they mean:

Math.abs(x) absolute value of x Math.abs(-4) is 4

Math.sqrt(x) square root of x Math.sqrt(25) is 5.0

Math.min(b,c) minimum of b and c Math.min(5, 4) is 4

Math.max(b,c) maximum of b and c Math.max(–6,4) is 4

Math.floor(x) largest integer that is not larger than x Math.floor(–3.2) is –4.0
Math.floor(3.2) is 3.0

Math.ceil(x) smallest integer that is not smaller than x Math.ceil(–3.2) is –3.0
Math.ceil(3.2) is 4.0

In addition, static variable Math.PI gives the best double approximation to pi, the ratio of the diameter of
a circle to its circumference. Class Math has other static functions. Later, we will tell you where to find
their descriptions.

Fill in the following table by placing the calls in the interactions pane and seeing what value DrJava gives:

call value

Math.min(-7, 4)

Math.min(Math.min(3,4), 5)

Math.sqrt(5)

Math.sqrt(-5)

Math.sqrt(25)

Math.floor(–3.7)

Math.ceil(3.7)

Math.ceil(–3.7)

Math.abs(3.7)

Math.abs(–3.7)

Math.abs(–3)

Math.PI

