11/17/09

CS1110 19N ber 2009 Excepti

s in Java.

Today’s reading: Ch. 10. Next lecture’s reading: sec. 9.3
A7 due Friday December 4.
Please check that your grades on CMS match what you think they are.

No labs Tuesday Nov 24 or Wed Nov 25; no office hours during
Thanksgiving break. There is class Tuesday Nov 24.

The final exam will be Monday, Dec. 14", 7-9:30pm in Baker
Laboratory 200. We are scheduling review sessions for study week, Dec
7-9.

Today’s topic: when things go wrong (in Java)

Q1: What happens when an error causes the system to abort?
(NullPointerException, ArrayIndexOutOfBoundsException, ...)

Understanding this helps you debug.

Q2: Can we make something other than termination happen?

Understanding this helps you write more flexible code.

Important example: a “regular person” enters malformed input.

It is sometimes better to warn and re-prompt the user
than to have the program crash (even if the user didn’t
follow your exquisitely clear directions or
preconditions).

errors (little e) cause Java to throw a Throwable object

a0 Throwable
Throwable /\

detailMessage Error
2N /N

OutOfMemoryError

backtrace <call stack>

Exception / ‘ \
RuntimeException
ArithmeticException

Exceptions are

signals that help Errors are
may be needed:; s1g1}als that
they can be things are
“handled”. beyond help.

/*#* Illustrate exception handling */
public class Ex {
public static void first() {
second();

Ex first();

Throwable object is thrown
to successive “callers” until
caught. (Here, Java will
catch it because nothing else

does.) public static void second() {

third();
System prints the call-stack }
trace on catching exception:
ArithmeticException: / by zero
at Ex.third(Ex.java:13)
at Ex.second(Ex.java:9) }

at Ex.first(Ex.java:5) }
at sun.reflect.NativeMethodAccessorImpl.
invoke@(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(..)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(..)
at java.lang.reflect.Method.invoke(Method. java:585)

public static void third() {
int x=5/0y,

11/17/09

How can we catch/handle Throwables? With Try/catch blocks.

/** = reciprocal of x. Thows an ArithmeticException if x is 0.
(Assume this is third-party code that you can’t change.)*/
public static double reciprocal(int x) {

o

}

/#* = reciprocal(x), or -1 if x is 0%/

public static double ourReciprocal(int x) { R D (gLl [

finishes without throwing

oy i thing, fine.
return reciprocal(x); RPN, WS

If it throws an
ArithmeticException
object, catch it (execute
¥ the catch block); else

} throw it out further.

} catch (ArithmeticException ae) {
return -1;

Try-statements vs. if-then checking
/*#* = reciprocal(x), or -1 if x is 0%/
public static double ourReciprocal2(int x) {
if (x 1=0) {
return reciprocal(x);
¥ else {
return -1;

¥
¥

This was meant to be a small example. Use your judgment:

For (a small number of) simple tests and “normal” situations that the
method itself should handle, if-thens are better.

«If the caller, not the method itself, should decide what should be
done, throw an exception (like reciprocal() does) to signal the caller.
* There are some natural try/catch idioms...

/*#* Illustrate exception handling */
public class Ex {
public static void first(int x) {
second(x+1);

}

We can create new objects
of pre-existing Throwable
subclasses.

public static void second(int y) {
third(y+1);
Ex first(3); }

public static void third(int z) {
throw new

ArithmeticException: third: z was 5
at Ex.third(Ex java: 14)
at Ex.second(Ex java:9) ArithmeticException
at Ex first(Ex java:5) (“third: z was ” + 2);
at sun.reflect.NativeMethod AccessorImpl.invokeO(Native Method)
at sun.reflect.NativeMethod Accessarlmpl.invoke(...)
at sun.reflect.DelegatingMethod AccessorImpl.invoke(...)
at java.lang.reflect. Method.invoke(Method.java:585)

‘We can even write our own Exception subclasses,
but we may need a “throws” clause to compile

/*#* Class to illustrate exception handling */
ublic class Ex
P { Don’t worry

ublic static void first() throws OurExcepti
P 0 urEixception { about whether

second();
) to put a throws
public static void second() throws OurException { clause in or not.
third(); Just put it in
} when it is

public static void third() throws OurException {
throw new OurException(*“intentional error at
third”);

needed in order
for the program
to compile.

