
11/17/09	

1	

CS1110 19 November 2009 Exceptions in Java.

Today’s reading: Ch. 10. Next lecture’s reading: sec. 9.3	

A7 due Friday December 4.	

Please check that your grades on CMS match what you think they are.	

No labs Tuesday Nov 24 or Wed Nov 25; no office hours during
Thanksgiving break. There is class Tuesday Nov 24.	

The final exam will be Monday, Dec. 14th, 7-9:30pm in Baker
Laboratory 200. We are scheduling review sessions for study week, Dec
7-9.	

1	

Today’s topic: when things go wrong (in Java)

Q1: What happens when an error causes the system to abort? 	

Important example: a “regular person” enters malformed input.

Understanding this helps you debug.	

(NullPointerException, ArrayIndexOutOfBoundsException, …)	

Q2: Can we make something other than termination happen? 	

It is sometimes better to warn and re-prompt the user
than to have the program crash (even if the user didn’t
follow your exquisitely clear directions or
preconditions).

2	

Understanding this helps you write more flexible code.

errors (little e) cause Java to throw a Throwable object	

Errors are
signals that

things are
beyond help.	

Exceptions are
signals that help
may be needed;
they can be
“handled”.	

Throwable	

Exception	

 Error	

RuntimeException	

ArithmeticException	

…	

 …	

…	

 …	

OutOfMemoryError	

…	

Throwable	

a0	

“/ by zero”	

detailMessage	

backtrace	

… 	

Exception	

RuntimeException	

ArithmeticException	

<call stack>	

3	

/** Illustrate exception handling */	

public class Ex { 	

 public static void first() {	

 second();	

 }	

 public static void second() {	

 third();	

 }	

 public static void third() {	

 int x= 5 / 0;	

 }	

}	

Ex.first();	

4	

System prints the call-stack
trace on catching exception:	

Throwable object is thrown
to successive “callers” until
caught. (Here, Java will
catch it because nothing else
does.)	

AE	

a0	

at Ex.second(Ex.java:9)	
at Ex.first(Ex.java:5)	
 at sun.reflect.NativeMethodAccessorImpl.  
 invoke0(Native Method)	
 at sun.reflect.NativeMethodAccessorImpl.invoke(…)	
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)	
 at java.lang.reflect.Method.invoke(Method.java:585)	

ArithmeticException: / by zero	
 at Ex.third(Ex.java:13)	

11/17/09	

2	

Execute the try-block. If it
finishes without throwing

anything, fine.	

If it throws an
ArithmeticException

object, catch it (execute
the catch block); else

throw it out further.	

/** = reciprocal(x), or -1 if x is 0*/	

public static double ourReciprocal(int x) {	

 return reciprocal(x);	

}	

try {	

}	

 catch (ArithmeticException ae) {	

 return -1;	

}	

5	

How can we catch/handle Throwables? With Try/catch blocks.	

/** = reciprocal of x. Thows an ArithmeticException if x is 0. 	

 (Assume this is third-party code that you can’t change.)*/	

public static double reciprocal(int x) {	

 …; 	

}	

/** = reciprocal(x), or -1 if x is 0*/	

public static double ourReciprocal2(int x) {	

 return reciprocal(x);	

}	

if (x != 0) {	

}	

 else {	

 return -1;	

}	

6	

Try-statements vs. if-then checking	

This was meant to be a small example. Use your judgment:	

• For (a small number of) simple tests and “normal” situations that the
method itself should handle, if-thens are better. 	

• If the caller, not the method itself, should decide what should be
done, throw an exception (like reciprocal() does) to signal the caller.	

•  There are some natural try/catch idioms…	

/** Illustrate exception handling */	

public class Ex { 	

 public static void first(int x) {	

 second(x+1);	

 }	

 public static void second(int y) {	

 third(y+1);	

 }	

 public static void third(int z) {	

 throw new���
 ArithmeticException���
 (“third: z was ” + z);	

 }	

}	

ArithmeticException: third: z was 5	

 at Ex.third(Ex.java:14)	

 at Ex.second(Ex.java:9)	

 at Ex.first(Ex.java:5)	

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)	

 at sun.reflect.NativeMethodAccessorImpl.invoke(…)	

 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)	

 at java.lang.reflect.Method.invoke(Method.java:585)	

 7	

We can create new objects	

of pre-existing Throwable 	

subclasses.	

Ex.first(3);	

We can even write our own Exception subclasses,
but we may need a “throws” clause to compile

/** Class to illustrate exception handling */	

public class Ex {	

 public static void first() throws OurException {	

 second();	

 }	

 public static void second() throws OurException {	

 third();	

 }	

 public static void third() throws OurException {	

 throw new OurException(“intentional error at 	

 third”);	

 }	

Don’t worry
about whether

to put a throws
clause in or not.

Just put it in
when it is

needed in order
for the program

to compile.	

8	

