Lecture 22. Listening to events on a GUI
(and development of a loop)
Sec. 17.4 contains this material. Corresponding lectures on
ProgramLive CD is a better way to learn the material.

‘Why men think “computer”
should be a feminine word

‘Why women think “computer”
should be a masculine word

1. No one but their creator 1. In order to do anything with
understands their internal logic. them, you have to turn them on.
2. The native language they use to || 2. They have a lot of data but still
talk with other computers is can't think for themselves.
incomprehensible to everyone else. || 3. They are supposed to help you

3. Even the smallest mistakes are solve problems, but half the time
stored in long term memory for they ARE the problem.

possible later retrieval. 4. As soon as you commit to one,
4. As soon as you commit to one, you realize that if you had waited
half your paycheck goes for a little longer, you could have
accessories for it. gotten a better model.

Developing a loop

// Set x to length of largest segment of equal values in b[0..n-1].
// Precondition: x is sorted (in ascending order)

0

n
b[1123335557888809] n[14 | x|

/I x = length of largest segment of equal values in b[0..n-1].

2

Listening to events: mouseclick, mouse movement into
or out of a window, a keystroke, etc.

* An event is a mouseclick, a mouse movement into or out of
a window, a keystroke, etc.

* To be able to “listen to” a kind of event, you have to
1. Write a method that will listen to the event.
2. Let Java know that the method is defined in the class.

3. Register an instance of the class that contains the
method as a listener for the event.

We show you how to do this for clicks on buttons, clicks on
components, and keystrokes.

|. Write the procedure to be called when button is clicked:
/** Process click of button */
public void actionPerformed(ActionEvent ae) {

} Listening to
a Button
3. Have class implement interface ActionListener:

public class C extends JFrame implements
ActionListener {

}

4. Add instance of this class as an “action listener” for button:
button.addActionListener(this);

/** An instance has two buttons. Exactly one is always enabled. */
public class ButtonDemo] extends JFrame .
implements ActionListener { Listening to
/** Class invariant: exactly one of eastB and westB is enabled */a Button
private JButton westB=new JButton("west");
private JButton eastB= new JButton("east");
/** Constructor: frame with title t & two buttons */
public ButtonDemol(String t) {
super(t);
Container cp= getContentPane();
cp.add(westB, BorderLayout. WEST);
cp.add(eastB, BorderLayout. EAST); /¥* Process a click of a button */
westB.setEnabled(false); public void actionPerformed

west east

eastB.setEnabled(true); (ActionEvent e) {

bool: b= B.isEnabled();
westB.addActionListener(this); colean eastBisEnabled()

eastB.addActionListener(this); eastB.setEnabled(!b);

pack(); }westB.setEnab\ed(b);

setVisible(true); } red: listening
}

blue: placing

O O O mouse ..

A JPanel that is painted

e The content pane has a JPanel in its CENTER and
a “reset” button in its SOUTH.

e The JPanel has a horizontal box b, which contains
two vertical Boxes.

e Each vertical Box contains two instances of class Square.

e Click a Square that has no pink circle, and a pink circle is drawn.
Click a square that has a pink circle, and the pink circle disappears.
Click the rest button and all pink circles disappear.

o This GUI has to listen to:
(1) a click on a Button

(2) a click on a Square these are different kinds of events, and

they need different listener methods

/** An instance is a JPanel of size (WIDTH,HEIGHT). Green
or red depending on whether the sum of constructor parameters
is even or odd. .. */ Class

public class Square extends JPanel {
public static final int HEIGHT= 70; // height and
public static final int WIDTH= 70; // width of square
private int x, y; / Coordinates of square on board
private boolean hasDisk= false; / = "square has pink disk"

Square

/*#* Constructor: a square at (x,y) */
public Square(int x, int y) {

this x=x; this.y=y;

setPreferredSize(new Dimension(WIDTH,HEIGHT));
}

/** Complement the "has pink disk" property */
public void complementDisk() {
hasDisk= ! hasDisk;
repaint(); // Ask the system to repaint the square
} continued on next page

continuation of class Square

/* paint this square using g. System calls

paint whenever square has to be redrawn.*/

public void paint(Graphics g) {

if ((x+y)%2 == 0) g.setColor(Color.green);

else g.setColor(Color.red);
g fillRect(0, 0, WIDTH-1, HEIGHT-1);
if (hasDisk) {

g.setColor(Color.pink);

g fillOval(7, 7, WIDTH-14, HEIGHT-14);

}
g.setColor(Color.black);
g.drawRect(0, 0, WIDTH-1 HEIGHT-1);

g.drawString("("+x+", "+y+")", 10, S+HEIGHT/2);

}
}

Class
Square

/** Remove pink disk
(if present) */
public void clearDisk() {
hasDisk= false;
/I Ask system to
// repaint square
repaint();

¥

reset)

import javax.swing.*; A class that listens to a
import javax swing event.*; mouseclick in a Square
import java.awt.*;

import java.awt.event.*;

red: listening

blue: placing
/*#* Contains a method that responds to a
mouse click in a Square */
public class MouseEvents
extends MouselnputAdapter {
/I Complement "has pink disk" property
public void mouseClicked(MouseEvent e) {
Object ob= e.getSource();
if (ob instanceof Square) {

((Square)ob).complementDisk();
} mouse leaves cnmponcm
) mouse dragged beginning in
component

This class has several methods
(that do nothing) that process
mouse events:
mouse click
mouse press
mouse release
mouse enters component

Our class overrides only the method that processes mouse clicks
9

public class MouseDemo?2 extends JFrame
implements ActionListener {
Box b= new Box(BoxLayout.X_AXIS);
Box leftC= new Box(BoxLayout.Y_AXIS);
Square b00= new Square(0,0);
Square b01= new Square(0,1);
Box riteC= new Box(BoxLayout.Y_AXIS);
Square b10= new Square(1,0);
Square bl1=new Square(1,1);
JButton jb= new JButton("reset");
MouseEvents me= new MouseEvents();
/** Constructor: ... */
public MouseDemo?2() {
super(t);
leftC.add(b00); leftC.add(b01);
riteC.add(b10); riteC.add(b11);
b.add(leftC); b.add(riteC);

Container cp= getContentPane();

cp.add(b, BorderLayout. CENTER); Class MouseDemo2

cp.add(jb, BorderLayout.SOUTH); 0

red: listening

blue: placing

jb.addActionListener(this);
b00.addMouseListener(me
b0l.addMouseListener(me
bl0.addMouseListener(me
(
)

)
)
):
bl l.addMouseListener(me)
pack(); setVisible(true,
setResizable(false);
}
public void actionPerformed(
ActionEvent e) {
b00.clearDisk(); b0l.clearDisk();
bl0.clearDisk(); bl I.clearDisk();

}
}

Listening to the keyboard
import java.awt.*; import java.awt.event.*; import javax.swing.*;

public class AllCaps extends KeyAdapter {
JFrame capsFrame= new JFrame();
JLabel capsLabel= new JLabel();

public AllCaps() {
capsLabel.setHorizontal Alignment(SwingConstants. CENTER);
capsLabel.setText(":)");
capsFrame.setSize(200,200); 3.Add this instance as a
Container c= capsFrame.getCW key listener for the frame
¢.add(capsLabel); 2. Override this method.

capsFrame.addKeyListener(this); It is called when a key

capsFrame.show(); troke is detected.
) /

public void keyPressed (KeyEvent e) {
char typedChar= e.getKeyChar();
capsLabel.setText(("" + typedChar + "").toUpperCase());
¥
}

red: listening
blue: placing

|. Extend this class.

