CS1110 10 November 2009
binary search, linear search
insertion sort, selection sort, quick sort

Do exercises on pp. 311-312 to get familiar with concepts
and develop skill. Practice in DrJava! Test your methods!

Time spent on A5:

Comments on AS Liked not having to write test cases!

Recursion:

Needed too much
help, took too long

Add more methods; it

Make requirements/descriptions less
ambiguous, clearer; give more direction.

Need optional problem with more

complicated recursive solution would did not take long
have been an interesting challenge, more All d .

recursive functions. They make us think! ow us .tO O recursive

Make task 5 easier. I could not finish it. methods with loops r'ather

than recursively.

I had intended here to erupt in largely inc9herenl Good time

rage over that wretched concept of recursion, drinking beer

which I came to hate like an enemy: like a sentient
being who, knowing the difference between right
and wrong, had purposely chosen to do me harm.

while watching
the demo after I

min 2 (2 students) 00-02: 04 *
average 7.14 03-04: 57 sk
median 6 07-08: 28 #kkssksksk
max 18 09-10: 15 #k**
Prelim tonight, 7:30. 11-12: 08 **
. 13-14: 05 *
Olin 155 (A-K) 15-16: 04 *
Olin255(L-2) 17-18: 06 *
1
Sorting: “sorted” means in ascending order
n 0 n
insertion sort 0 i n
inv:b ‘ sorted ‘ ? ‘
for (inti=0; i<n; i=i+l) { ‘244667‘5 ‘
Push b[i] down into its sorted —
position in b[0.i]; 0 i
y 24456067 \
Iteration i makes up to i swaps. b[0..i-1]: i elements

In worst case, number of swaps needed is i worst case:

- = - *
0+1+2+3+...(n-1)=(n-1)*n/2. Tteration 0: 0 swaps

Called an “n-squared”, or n?, algorithm. Iteration 1: 1 swap
Iteration 2: 2 swaps

However, I then figured out how it works, and it is was done.
actually quite elegant, so now I suppose I have
learned something against my will. 2
0 n 0 n
pre: b post: b
insertion sort 0 i n
invariant: b ‘ sorted ‘ ? ‘

Add property to invariant: first segment contains smaller values.

selection sort 0 i n
invariant: b‘ <b[i..], sorted ‘ >b[0..i-1], ? ‘

for (inti=0; i<n; i=i+1) { ‘24466"899789‘“

int j= index of min of b[i..n-1];

Swap bl[j] and bl[i];

i n
[24466[7998809]

Also an “n-squared”, or nZ, algorithm.

/#* Sort b[h. k] */ Quicksort
public static void gsort(int[] b, int h, int k) {

if (b[h..k] has fewer than 2 elements)
return;
L » To sort array of size n.e.g. 2'%
int j= partition(b, h, k);
) . ) Worst case: n” e.g.2%
/I blh.j-1] <=b[j] <= b[j+1.k]
Average case:

/I Sort b[h..j-1] and b[j+1.k] nlogn. eg. 15%215
gsort(b, h, j-1); 215=32768
gsort(b, j+1,k); h k
pre: b ‘ X ‘ ? ‘
) j= partition(b, h, k);
h j k
post: b‘ <=X ‘x ‘ >=xX ‘

Tony Hoare,

Tony Hoare

in 2007

in Germany } P o

Thought of Quicksort in ~1958. Tried to explain it to a
colleague, but couldn’t.

Few months later: he saw a draft of the definition of the
language Algol 58 —later turned into Algol 60. It had recursion.
He went and explained Quicksort to his colleague, using
recursion, who now understood it.




Viewpoint

On teaching programming Reply

I don't like how we are forced
to visualize things in Dr. Gries'
way. ... Entire point of
programming is to be able to
look at things in different ways
and come up with different
solutions for one problem.
Forcing us to think of things in
his way and testing us on it has
been detrimental to my learn-
ing because in my opinion it
wastes time and confuses me.
This course should focus more
on solving problems rather
than drawing folders to
represent objects.

programs is needed in order to
bring understanding.

2. Problem solving is the focus.
The programs you wrote for
A5, the algorithms we are now
studying, and the way we
develop them, could not have

that we have given you.

3. We are giving you tools for
coming up with good solutions,

not just different ones.

1. A model of execution of Java

been possible without the basics

The NATO Software Engineering Conferences
homepages.cs.ncl.ac.uk/brian.randell/NATO/

7-11 Oct 1968, Garmisch, Germany

27-31 Oct 1969, Rome, Italy

Download Proceedings, which
have transcripts of discussions.
See photographs.

Software crisis:

Academic and industrial people.
Admitted for first time that they did
not know how to develop software

efficiently and effectively.

Software
Engineering,
1968

Next 10-15 years: intense period of research of software
engineering, language design, proving programs correct, etc.

¢y B

Software Engineering, 1968

During 1970s, 1980s, intense research on
How to prove programs correct,

How to make it practical,

Methodology for developing algorithms

The way we understand Throughout, we try to give
recursive methods is based on | | you thought habits to help you
that methodology. solve programming problems
Our understanding of and for effectively

development of loops is based
on that methodology.

Mark Twain: Nothing needs changing
so much as the habits of others.

The way we understand
recursive methods is based on
that methodology.

Our understanding of and
development of loops is based
on that methodology.

Throughout, we try to give
you thought habits to help
you solve programming
problems for effectively

Simplicity is key:
Learn not only to simplify,
learn not to complify.

Separate concerns, and
focus on one at a time.

Develop and test
incrementally.

Don’t solve a problem
until you know what the
problem is (give precise
and thorough specs).

Learn to read a program at
different levels of
abstraction.




