11/4/09

CS1110 5 November 2009
Developing array algorithms. Reading: 8.3..8.5

Important point: how we create the invariant, as a picture

Haikus (5-7-5) seen on Japanese computer monitors

Yesterday it worked. Serious error.
Today it is not working.

Windows is like that. Screen. Mind. Both are blank.

A crash reduces
Your expensive computer
To a simple stone.

The Web site you seek
Cannot be located, but
Countless more exist.

Three things are certain:
Death, taxes, and lost data.
Guess which has occurred?

Chaos reigns within.
Reflect, repent, and reboot.
Order shall return.

All shortcuts have disappeared.

P2 review session in Hollister B14, Sunday 1-3

4. for loops. We may give you a problem that requires
you to write a loop (with initialization) that
processes a range of integers. You should be able to
write a postcondition, write the loop header "for (int
k..)", write a loop invariant, and finally develop the
various parts of the loops and initialization.

5. while loops. THIS ITEM HAS BEEN REMOVED. YOU
ARE NOT RESPONSIBLE FORIT.

6. Arrays. Everything on Sects 8.1 and 8.2 of the text —
these pages discuss the technical details for using
arrays in Java and for reasoning about arrays,
including the range notation h..k (where h..h-1 is
allowed, and indicates the empty range). The prelim
will not deal with two-dimensional arrays. 2

Developing algorithms on arrays
We develop several important algorithms on arrays.

With each, we specify the algorithm by giving its precondition
and postcondition as pictures.

Then, draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition, since the
invariant is true at the beginning and at the end.

Four loopy questions —memorize them:

1. How does loop start (how to make the invariant true)?
2. When does it stop (when is the postcondition true)?

3. How does repetend make progress toward termination?

4. How does repetend keep the invariant true?

Horizontal notation for arrays, strings, Vectors

0 k b.length
b‘ <= sorted ‘ >=

Example of an assertion about an array b. It asserts that:
1. b[0.k-1]is sorted (i.e. its values are in ascending order)

2. Everything in b[0..k—1] is < everything in b[k..b.length—1]

0 h k
| | |

Given the index h of the First element of a segment and
the index k of the element that Follows the segment, h h+1
the number of values in the segment is k — h.
blh ..k — 1] has k — h elements in it.
(h+1)-h=1
4

11/4/09

Invariant as picture: Combining pre- and post-condition
Finding the minimum of an array. Given array b satisfying
precondition P, store a value in x to truthify postcondition Q:

0 n
P:b \ 9

(values in 0..n are
‘ and n>=0 ypknown)

0 n
Qb ‘ X is the min of this segment ‘

The invariant as picture: Combining pre- and post-condition

Put negative values before nonnegative ones. given precondition P:

0 n
‘ (values in 0..n-1 are unknown)

P:b

Swap the values of b[0..n-1] and store in k to truthify Q:

0 k .
» (values in 0.k-1 are <0,
Qb ‘ <0 ‘ >=0 values in k..n-1 are > 0)

The invariant as picture: Combining pre- and post-condition

Dutch national flag. Swap values of 0..n-1 to put the reds first, then the
whites, then the blues. That is, given precondition P, swap value of b
[0.n] to truthify postcondition Q:

0 n
P:b ‘ 9 ‘ (values in 0..n-1 are unknown)
0 n
Qb ‘ reds ‘ whites blues

How to make invariant look like initial condition

0 n
pre b ‘ ?

0 i k 1 n
invb ‘ reds ‘ whites ? blues

1. Make red, white, blue section empty: use formulas for
no. of values in these sections, set j, k , 1 so that they have
0 elements.

2. Compare precondition with invariant. E.g. in
precondition, 0 marks first unknown. In invariant, k marks
first unknown. Therefore, k and O must be the same.

11/4/09

Partition algorithm: Given an array b[h. k] with some value x in b[h]:

Pb [x] v |

Swap elements of b[h. k] and store in j to truthify P:
h j k

Qb ‘ <=X ‘x‘ >=X ‘

h k

change: b|354162381
h j k
into bl121354638

h i k
or bl1231345638

x is called the pivot value.
X is not a program variable; x just denotes the value initially in b[h].

Linear search (for value known to be in array)

Vague spec.: Find first occurrence of v in b[h..k-1], which is known to be there.
Better spec.: Store an integer in i to truthify postcondition Q:
Q: l.visnotinbfh.i-1]
2.v=bli]
h k

v is in here ‘

precondition P: b ‘

h i k

postcondition Q: b ‘ v not here ‘v ‘ ?

Can’t simply combine P and Q because position of v not known
initially. But we can just delete value v from Q:
h i k

invariant Q: b ‘ v not here ‘ v is in here

Linear search

Vague spec.: Find first occurrence of v in b[h.k-1].
Better spec.: Store an integer in i to truthify postcondition Q:
Q: 1l.visnotinb[h.i-1]
2.i=k OR v=blk]

P:b ‘ v is in here ‘

h i k

Qib‘ X not here .x‘ ?

i
ORh

b ‘ X not here ‘

Binary search: Vague spec: Look for v in sorted array segment b[h. k].
Better spec:
Precondition P: b[h..k] is sorted (in ascending order).

Store in i to truthify:
Postcondition Q: b[h..i] <= v and v <b[i+1.k]

Below, the array is in non-descending order:

h K Called binary search
P:b ‘ ? ‘ because each iteration
. of the loop cuts the
h ! k array segment still to
Qb[<«v >v | be processed in half

11/4/09

Reversal: Reverse the elements of array segment b[h. k].

h

precondition P: ‘ not reversed

h

postcondition Q: ‘ reversed

h k

b 123456789999

h k

int
mto b (999987654321

Change:

Remove adjacent duplicates

change: 0 n
b[122422789999

: 0 h a don’t care what is
into b[1242789899909] in b[ks 1]
Truthify:
b[0..h] = initial values in b[0..n] but with adj dups removed
h k
Precondition P: b‘ 2 ‘
h i k

initial values of b[0.Xk]
with no duplicates

Postcondition Q: b

unchanged ‘

Check whether two arrays are equal

/** =*“b and c are equal” (both null or both contain
arrays whose elements are the same) */
public static boolean equals(int[] b, int[] ¢) {

