
11/4/09	

1	

1	

CS1110 5 November 2009  
Developing array algorithms. Reading: 8.3..8.5	

Haikus (5-7-5) seen on Japanese computer monitors!

Yesterday it worked.���
Today it is not working.���
Windows is like that.	

A crash reduces ���
Your expensive computer���
To a simple stone.	

Three things are certain:���
Death, taxes, and lost data.���
Guess which has occurred?	

Serious error.���
All shortcuts have disappeared.���
Screen. Mind. Both are blank.	

The Web site you seek	

Cannot be located, but���
Countless more exist.	

Chaos reigns within.���
Reflect, repent, and reboot.���
Order shall return.	

Important point: how we create the invariant, as a picture	

2	

4. for	
 loops.	
 We	
 may	
 give	
 you	
 a	
 problem	
 that	
 requires	

you	
 to	
 write	
 a	
 loop	
 (with	
 initialization)	
 that	

processes	
 a	
 range	
 of	
 integers.	
 You	
 should	
 be	
 able	
 to	

write	
 a	
 postcondition,	
 write	
 the	
 loop	
 header	
 "for	
 (int	

k	
 ...)",	
 write	
 a	
 loop	
 invariant,	
 and	
 Ainally	
 develop	
 the	

various	
 parts	
 of	
 the	
 loops	
 and	
 initialization.	

5.	
 while	
 loops.	
 THIS	
 ITEM	
 HAS	
 BEEN	
 REMOVED.	
 YOU	

ARE	
 NOT	
 RESPONSIBLE	
 	
 FOR	
 IT.	

6.	
 Arrays.	
 Everything	
 on	
 Sects	
 8.1	
 and	
 8.2	
 of	
 the	
 text	
 —
these	
 pages	
 discuss	
 the	
 technical	
 details	
 for	
 using	

arrays	
 in	
 Java	
 and	
 for	
 reasoning	
 about	
 arrays,	

including	
 the	
 range	
 notation	
 h..k	
 (where	
 h..h-­‐1	
 is	

allowed,	
 and	
 indicates	
 the	
 empty	
 range).	
 The	
 prelim	

will	
 not	
 deal	
 with	
 two-­‐dimensional	
 arrays.	
 2	

P2 review session in Hollister B14, Sunday 1-3	

2	

Developing algorithms on arrays	

We develop several important algorithms on arrays.	

With each, we specify the algorithm by giving its precondition

and postcondition as pictures.	

Then, draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition, since the
invariant is true at the beginning and at the end.	

Four loopy questions —memorize them:	

1.  How does loop start (how to make the invariant true)?	

2.  When does it stop (when is the postcondition true)?	

3.  How does repetend make progress toward termination?	

4.  How does repetend keep the invariant true?	

4	

 3	

Horizontal notation for arrays, strings, Vectors	

Example of an assertion about an array b. It asserts that:	

1.  b[0..k–1] is sorted (i.e. its values are in ascending order)	

2.  Everything in b[0..k–1] is ≤ everything in b[k..b.length–1]	

b <= sorted >=	

0 k b.length	

b 	

0 h k	

Given the index h of the First element of a segment and	

the index k of the element that Follows the segment,	

the number of values in the segment is k – h.	

b[h .. k – 1] has k – h elements in it.	

h h+1	

(h+1) – h = 1	

11/4/09	

2	

3	

Invariant as picture: Combining pre- and post-condition	

Finding the minimum of an array. Given array b satisfying
precondition P, store a value in x to truthify postcondition Q:	

 ? and n >= 0 	

0 n	

P: b	

 x is the min of this segment 	

0 n	

Q: b	

(values in 0..n are
unknown)	

4	

The invariant as picture: Combining pre- and post-condition	

Put negative values before nonnegative ones. given precondition P:	

 ? 	

0 n	

P: b	

 < 0 >= 0 	

0 k n	

Q: b	

(values in 0..n-1 are unknown)	

Swap the values of b[0..n-1] and store in k to truthify Q:	

(values in 0..k-1 are < 0,	

 values in k..n-1 are > 0)	

5	

The invariant as picture: Combining pre- and post-condition	

Dutch national flag. Swap values of 0..n-1 to put the reds first, then the
whites, then the blues. That is, given precondition P, swap value of b
[0.n] to truthify postcondition Q: 	

 ? 	

0 n	

P: b	

 reds whites blues 	

0 n	

Q: b	

(values in 0..n-1 are unknown)	

4	

How to make invariant look like initial condition	

pre b ? 	

0 n	

inv b reds whites ? blues	

0 j k l n	

1. Make red, white, blue section empty: use formulas for
no. of values in these sections, set j, k , l so that they have
0 elements.	

2. Compare precondition with invariant. E.g. in
precondition, 0 marks first unknown. In invariant, k marks
first unknown. Therefore, k and 0 must be the same. 	

11/4/09	

3	

6	

Partition algorithm: Given an array b[h..k] with some value x in b[h]:	

 x ?	

h k	

P: b	

 <= x x >= x 	

h j k	

Q: b	

 3 5 4 1 6 2 3 8 1 	

b	

h k	

change:	

into	

 1 2 1 3 5 4 6 3 8	

b	

h j k	

x is called the pivot value.	

x is not a program variable; x just denotes the value initially in b[h]. 	

Swap elements of b[h..k] and store in j to truthify P:	

 1 2 3 1 3 4 5 6 8	

b	

h j k	

or	

7	

Linear search (for value known to be in array)

 v is in here 	

h k	

precondition P: b	

postcondition Q: b	

Vague spec.: Find first occurrence of v in b[h..k-1], which is known to be there.	

Better spec.: Store an integer in i to truthify postcondition Q:	

	

 Q: 1. v is not in b[h..i-1]	

	

 2. v = b[i]	

 v not here v ? 	

h i k 	

Can’t simply combine P and Q because position of v not known
initially. But we can just delete value v from Q: 	

invariant Q: b	

 v not here v is in here 	

h i k 	

8	

 x not here 	

 i	

h k	

Linear search

 v is in here 	

h k	

P: b	

 x not here x ? 	

h i k 	

Vague spec.: Find first occurrence of v in b[h..k-1].	

Better spec.: Store an integer in i to truthify postcondition Q:	

	

 Q: 1. v is not in b[h..i-1]	

	

 2. i = k OR v = b[k]	

Q: b	

 b	

OR	

9	

Binary search: Vague spec: Look for v in sorted array segment b[h..k].	

 Better spec:	

	

Precondition P: b[h..k] is sorted (in ascending order). 	

Store in i to truthify:	

	

Postcondition Q: b[h..i] <= v and v < b[i+1..k]	

Below, the array is in non-descending order:	

 ? 	

h k	

P: b	

 <= v > v 	

h i k	

Q: b	

Called binary search
because each iteration
of the loop cuts the
array segment still to
be processed in half	

11/4/09	

4	

10	

Reversal: Reverse the elements of array segment b[h..k]. 	

 reversed	

h k	

postcondition Q:	

 not reversed	

h k	

precondition P:	

 1 2 3 4 5 6 7 8 9 9 9 9 	

b	

h k	

Change:	

into	

 9 9 9 9 8 7 6 5 4 3 2 1	

b	

h k	

11	

Remove adjacent duplicates 	

 1 2 2 4 2 2 7 8 9 9 9 9 	

b	

0 n 	

change:	

into	

 1 2 4 2 7 8 9 8 9 9 9 9	

b	

0 h n 	

Truthify:	

b[0..h] = initial values in b[0..n] but with adj dups removed	

don’t care what is
in b[k+1..n]	

 ? 	

h k	

Precondition P: b	

initial values of b[0..k] unchanged���
with no duplicates 	

h i k	

Postcondition Q: b	

15	

Check whether two arrays are equal	

/** = “b and c are equal” (both null or both contain���
 arrays whose elements are the same) */	

public static boolean equals(int[] b, int[] c) { 	

} 	

15	

