CS1110 29 Oct 2009 Arrays (secs 8.1-8.3)

Listen to the following (short, insightful) PLive lectures on loops:
1. The 3 lectures on Lesson page 7-6 and the whole page.
2. The 4 lectures in Lesson page 7-5.

AS due tonight. Today, use the TA office hours in Upson 328B if you
are really behind and need involved one-on-one help; for small
questions see the consultants in the ACCEL lab green room.

Prelim 2. Tuesday, 10 November, 7:30PM
If you have a conflict, and if you haven’t been emailed about it, please
email Maria Witlox mwitlox @cs.cornell.edu by Friday!!!!

Make sure you give her your last name, first name, Cornell netid. State
clearly and completely what the conflict is. (E.g. don’t just say “I have
another test.” State what the course (or whatever) is.)

10/28/09

Computer science has its field called computational complexity;
mine is called computational simplicity. — Prof. Gries

On (computational) simplicity

We are trying to teach not just Java, but how to think about problem
solving.

Most of us don’t write perfect essays in one pass, and coding is the same:
writing requires revising; programming requires revising.
If you are writing too much code —it gets longer and longer, with no end in

sight: stop and look for a better way. If your code is getting convoluted and
you have trouble understanding it: stop and look for a better way.

Learn to keep things simple, to solve problems in simple ways. This
sometimes requires a different way of thinking.

A key point is to break a problem up into several pieces and do each piece in
isolation, without thinking about the rest of them. Our methodology for
developing a loop does just that. B

(w0]

Array: object that stores lists of things. length
Holds a fixed number of values of a declared type. 0 5
(So a0 will always hold 4 int values.) | 2
The type of array a0 is int[] 2 4
Store its name in a variable (as always). 3 -2

Basic form of a declaration:
<type> <variable-name> ;
So, here is a declaration of x: int[] x ;

Does not create array, it only declares x.
x’s initial value is null.

Elements of array are numbered: 0, 1,2, ..., x.length—1

Notes on array length

We write x.length, not x.length(), because length
is a field, not a method.

1 7
Length field is final: an array’s length (field or 2 4
actual number of items) cannot be changed once 3 >

the array is created.

‘We omit this field in the rest of the pictures.

The length is not part of the array type, which is int[].

This means that an array variable can be assigned arrays of
different lengths; x could later hold the name of a seven-item
int array. (But not the name of a seven-item double array).

int[] x ; il
a0
x=new int[4]; Create array object with 4 default 0 0
values, store its name in x 1 0
2 0
x 3o

int[]

x[21=5; Assign 5 to array element 2 and a0

-4 to array element 0 0 4

x[0]=-4; 1 0
x[2] is a reference to element number 2 of array x 2 5

3 0

int k= 3; 7\

x[k]= 2% x[0]; Assign 2#x[0], ie.-8,t0 x[3] 0 4

_ .. Assign 6 to x[2] 1 0

x[k-1]= 6; N
3L 8 P

Array initializers

Instead of
al

int[] c= new int[5];

5
c[0]=5; c[1]=4; ¢[2]=7; ¢c[3]= 6; c[4]=5; A
7
Use an array initializer:
6
int[] c=new int[] {5,4,7,6,5};
5
array initializer: gives initial values for the ... can omit
array items. Values must have the same expression

type, in this case, int. Length of the array between brackets.

is the number of values in the list; so ... Sometimes, can

even omit the
“new <type>[]”
part (see pg 274).

Use of an array initializer

public class D {

public static final String[] months= new String[]{"January", "February",
"March", "April", "May", "June", "July", "August",
"September", "October", "November", "December"};

public static String theMonth
return months[m-1];
}
¥

= the month, given its number m.
Precondition: 1 <=m <= 12 */

months[m-1] is

returned, since
(int m) { ?

months[0] = “January”,
months[1] = “February”,

10/28/09

Declaration: int[] a;

Creation:

Reference: ale]

Change element: a[e]=el;

Variable months is:

the array whose name it permanently hol

static: no reason to have each object contain one.
public: can be seen outside class D.

final: its value cannot be changed (Careful! you can still change the elements in

ds! e.g..illegal (except in the Interactions pane...) to 7

say months= new String[] {“Lee”}, but legal to say months[0]= “Lec”)

Differences between array and Vector (“classier”, fbofw)

Vector v;

Elements of a: int values Elements of v: any Objects
a= new int[n]; v=new Vector();

Array always has n elements Number of elements can change

v.get(e)

v.set(e,el);

Array locations a[0], a[1], ... in
successive locations in memory.
Access takes same time no matter
which one you reference.

Can’t tell how Vectors are stored in
memory. Referencing and changing
elements done through method calls

Elements of any Object type (but not a

Elements all the same declared type primitive type). Casting may be

(a primitive type or class type)

Initialization shorthand exists. Class

No special initialization. Class has
has no methods, can’t be extended.

methods, can be extended.

necessary when an element is retrieved.

“Procedure” for swapping variable values

public class D {
/*¥% = Swap x and y */

Procedure swap for swapping array elements

public class D {
/*#* = Swap b[h] and b[k] */

public static void swap (int x, int y) {
int temp= x;

X=Yy; A call will NOT swap a and b.
y=temp; Parameters x and y are initialized to
} the values of a and b, and thereafter,
} there is no way to change a and b.

a b[3]
swap: 1 D

swap(a, b);

frame for call just after
frame created and args
assigned to parameters:

public static void swap (int[] b, int h, int k) {
int temp= b[h];
blh]=blk];
b[k]= temp;

frame for
call just
after frame
is created.

This does swap b[h]
and b[k], because
parameter b contains
name of the array.

public class D {

/** = index of first occurrence of ¢ in b[h..]
Precondition: ¢ is guaranteed to be in b[h..] */

public static int findFirst (int c, int[] b, int h) {
// Store in i the index of first ¢ in b[h..]
inti= h;
// invariant: ¢ is not in b[h..i-1]
while (b[i] !=¢) {

Linear search

Remember:

h.h-1is the
empty range

Loopy questions:
1. initialization?
2. loop condition?

. . . . 3. Progress?
//'bli] = ¢ and c is not in b[h..i-1] 4. Keep invariant true?
return i; ’ ’

i= i+ 1;

}
Y invariant
X h i k
L 1 ko ‘ ¢ is not here c is in here
b | cis not here ‘c‘ ‘

/** = arandom int in 0..p.length-1, assuming p.length > 0.
The (non-zero) prob of int i is given by p[i].

Non-uniform

randomness

Calls: roll(new double[] {.3,.7}) from uniform
roll (new double[]{33,.33,.34})*/ randomness:

It’s a kind of

public static int roll(double[] p) {
double r= Math.random(); // r in [0,1)
/% Store in i the segment number in which r falls. */

inti =0; doubleiEnd=
//'inv: 1 is not in segments

I

}

/l 1 is in segment i
return i; I

linear search!

‘JIOJ; .
ooked at (segments 0..i-1)

and iEnd is the end of (just after) segment i
while (rnotinsegmenti-) {

1. init
r>=iEnd 2. condition
iEnd=iEnd + p[i+1]; 3. progress
i=i+1; 4. invariant true

0 F[O]

F[0]+p[1] 1
I

