CS1110 27 October 2009
while loops

Reading: today: Ch. 7 and ProgramLive sections.

For next time: Ch. 8.1-8.3

Prelim 2. Tuesday, 10 November, 7:30PM

If you have a conflict, and if you haven’t been contacted

about the conflict, please email Maria Witlox
mwitlox@cs.cornell.edu by Friday!!!!

Make sure you give her your last name, first name, Cornell
netid. State clearly and completely what the conflict is. (E.g.
don’t just say “I have another test.” State what the course
(or whatever) is.)

Watch the lectures on www.videonote.com/cornell

Beyond ranges of integers: the while loop

while (<condition>) {
sequence of declarations

and statements

<condition>: a boolean expression.

<repetend>: sequence of statements.

In comparison to for-loops: we get a broader notion of “there’s still
stuff to do” (not tied to integer ranges), but we must ensure that
“condition” stops holding (since there’s no explicit increment).

Canonical while loops

// Process b..c // Process b..c
for (int k=b; k <= c; k=k+1) { int k=b;
Process k; while (k <=c¢) {
Process k;
k=k+1;

} scope of k: the loop;

k can’t be used after
the loop

/I process a sequence of input not of fixed size

Here’s one way to <initialization>;

use the while loop while (<still input left>) {
Process next piece of input;

make ready for the next piece of input;

Understanding assertions about lists

0123456738

vVIXYZX ACZZ Z This is a list of Characters

S
W
~
=]

This is an assertion about v
and k. It is true because

k E chars of v[0..3] are greater

than ‘C’ and chars of v[6..8]

are ‘Z’s.

Indicate
whether
each of
these 3
assertions
is true or
false. 4

The while loop: 4 loopy questions. Allows us to focus on one
thing at a time and thus separate our concerns.
// Set ¢ to the number of ‘e’s in String s.

1. How does it start? ((how)
does init. make inv true?)

int n=s.length();

k=0;c=0;

// inv:c=#. of ‘e’s in s[0.k-1 .
e of ‘e’s in s[! 2. When does it stop? (From
the invariant and the falsity of
loop condition, deduce that
result holds.)

while (k <n) {
if (s.charAt(k) == ‘e’)
c=c+1;
3. (How) does it make

k= k+ 1; N
progress toward termination?

¥
// ¢ = number of ‘e’s in s[0..n-1] 4. How does repetend keep

invariant true?

Suppose we are thinking of
this while loop:
initialization;
while (B) {

repetend

b

We add the postcondition and
also show where the invariant
must be true:
initialization;
// invariant: P
while (B) {
/I { Pand B}
repetend
/I{P}
}
/I {Pand !B}
// { Result R }

The four loopy questions

Second box helps us develop four loopy
questions for developing or understanding a
loop:

1. How does loop start? Initialization
must truthify invariant P.
2. When does loop stop?

Atend, P and !B are true, and these must
imply R. Find !B that satisfies
P&& !B = R.

3. Make progress toward termination?
Put something in repetend to ensure this.

4. How to keep invariant true? Put
something in repetend to ensure this.

Appendix examples: Develop loop to store in x the sum of 1..100.

We’ll keep this definition of x and k true:
x = sum of 1.k-1

1. How should the loop start? Make range 1..k-1

empty: k=1; x=0; Four loopy

questions
2. When can loop stop? What condition lets us

know that x has desired result? When k == 101

3. How can repetend make progress toward termination? k= k+1;

4. How do we keep def of x and k true? x=x+k;

k=1; x=0;
// invariant: x = sum of 1..(k—1)
while (k !=101) {
x= x +k;
k=k+1;
¥
// { x =sum of 1..100 } 7

Building a fair coin from an unfair coin

/*## = result of flipping a fair coin
(heads/tails is true/false) */
public static boolean fairFlip() {
boolean f1= new unfair flip;
boolean 2= new unfair flip;
/* invariant P: f1, f2 contain results
of 2 unfair flips, and
in all previous flips, f1 and f2
were the same */
while (f1 ==12) {
f1=new unfair flip;
2= new unfair flip;
}
/IR: P and f1!= {2
return !'fl && f2

}

John von Neumann:

building a “fair coin” from

an unfair coin

loopy questions:

1. Pis true initially

2. When it stops, R is true

4. Repetend keeps P true

3. But we can’t prove that
the loop makes progress
toward termination!

Can’t get something
for nothing

Unfair flip produces heads with some probability p,0 <p < 1

Roach infestation

Iterative version of logarithmic algorithm to calculate b**c

/*#* = number of weeks it takes roaches to fill the apartment --see p 244 of text*/ (we’ve seen a recursive version before).

public static int roaches() {

double roachVol= .001; // Space one roach takes
double aptVol= 20%20%#8; // Apartment volume
double growthRate= 1.25; // Population growth rate per week

intw= 0 // number of weeks
int pop=100; /I roach population after w weeks

// inv: pop = roach population after w weeks AND
/I before week w, volume of roaches < aptVol
while (aptVol > pop * roachVol) {

pop= (int) (pop * growthRate);

w=w+ 1;

/1 Apartment is filled, for the first time, at week w.
return w;

} 9

/*#% set z to b**c, given ¢ = 0 */
int x=b; int y=c; int z=1;

while (y !=0) {
if (y % 2==0)
{x=x*xy=y/2; }
else{z=z*x;y=y—1;}
}
/I {z=b**c}

/l invariant: z * x**y =b**c and0<y=<c

Calculate quotient and remainder when dividing x by y

Xy =q+rly 21/4=4 + 3/4

Property: x=q*y +r and O<r<y

/** Set q to quotient and r to remainder.
Note: x >=0and y >0 */

int g=0; int r=x;
/linvariant: x=q*y+r andO=<r
while (r>=y) {
r=r-y;
q=q+1;
}
//{x=q*y+r and O=<r<y}

