
1	

1	

CS1110 22 October 2009 ���
Read: Sec. 2.3.8 and chapter 7 on loops. ���

The lectures on the ProgramLive CD can be a big help.	

Some anagrams	

A decimal point 	

I'm a dot in place 	

 	

Animosity Is no amity	

Debit card 	

Bad credit 	

 	

 	

 	

Desperation A rope ends it	

Dormitory 	

Dirty room 	

 	

 	

 	

Funeral Real fun	

Schoolmaster	

 The classroom 	

 	

 	

Slot machines Cash lost in 'em	

Statue of liberty 	

Built to stay free 	

 	

Snooze alarms Alas! No more Z's	

The Morse code 	

Here come dots 	

 	

Vacation times I’m not as active	

Western Union 	

No wire unsent 	

 	

George Bush 	

He bugs Gore	

Parishioners 	

I hire parsons	

 	

 	

 	

The earthquakes That queen shake	

Circumstantial evidence 	

Can ruin a selected victim	

Victoria, England’s queen 	

Governs a nice quiet land	

Eleven plus two 	

Twelve plus one (and they have 13 letters!)	

2	

Assertion: true-false statement (comment) asserting a belief
about (the current state of) your program.	

 // x is the sum of 1..n <- asserts a specific relationship 	

 	

	

 	

 between x and n	

Assertions help prevent bugs by helping you keep track of what
you’re doing …	

… and they help track down bugs by making it easier to check
belief/code mismatches.	

Assertions can help with bugs in loops: initialization errors,
termination errors, and processing errors.	

x	

 ?	

 n	

 3	

x	

 ?	

 n	

 0	

x	

 ?	

 n	

 1	

3	

Precondition: assertion placed before a segment ���
Postcondition: assertion placed after a segment ���

// x = sum of 1..n-1	

x= x + n;	

n= n + 1;	

// x = sum of 1..n-1	

precondition	

postcondition	

1 2 3 4 5 6 7 8 	

x contains the sum of these (6)	

n

n
1 2 3 4 5 6 7 8 	

x contains the sum of these (10)	

4	

Solving a problem ���

// x = sum of 1..n	

n= n + 1;	

// x = sum of 1..n	

precondition	

postcondition	

What statement do you put here
so that segment is correct? (if
precondition is true, execution
of segment should make
postcondition true.)	

A. x= x + 1;	

B. x= x + n;	

C. x= x + n+1;	

D. None of A, B, C	

E. I can’t figure it out	

5	

Solving a problem ���

// x = sum of 1..n-1	

n= n + 1;	

// x = sum of 1..n-1	

precondition	

postcondition	

What statement do you put here
so that segment is correct? (if
precondition is true, execution
of segment should make
postcondition true.)	

A. x= x + 1;	

B. x= x + n;	

C. x= x + n+1;	

D. None of A, B, C	

E. I can’t figure it out	

 6	

Invariants: another type of assertion	

for (int i= 2; i <= 4; i= i +1) {	

 x= x + i*i;	

}	

i= 2;	

i <= 4	

i= i +1;	

true	

false	

x= x + i*i;	

// invariant	

An invariant is an assertion about the variables that is true before and
after each iteration (execution of the repetend).	

Invariant:	

x = sum of squares of 2..i-1	

2	

7	

for (int k= a; k <= b; k= k + 1) {	

	

Process integer k;	

}	

// post: the integers in a..b have been processed	

// Process integers in a..b	

 Command to do something 	

equivalent post-condition	

// inv: the integers in a..k-1 have been processed	

8	

Methodology for developing a for-loop	

1.  Recognize that a range of integers b..c has to be processed	

2.  Write the command and equivalent postcondition. 	

 // Process b..c	

 // Postcondition: range b..c has been processed	

3. Write the basic part of the for-loop.	

for (int k= b; k <= c; k= k+1) {	

 // Process k	

}	

4. Write loop invariant.	

// Invariant: range b..k-1 has been processed 	

5.  Figure out any initialization.	

Initialize variables (if necessary) to make invariant true.	

6. Implement the repetend (Process k).	

9	

Finding an invariant	

// Store in double variable v the sum	

// 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n	

for (int k= 1; k <= n; k= k +1) {	

	

Process k;	

}	

// v =1/1 + 1/2 + … + 1/n	

v= 0;	

// invariant: v = sum of 1/i for i in 1..k-1	

Command to do
something and 	

equivalent
postcondition	

What is the invariant?	

 1 2 3 … k-1 k k+1 … n	

10	

Finding an invariant	

for (int k= 0; k < s.length(); k= k +1) {	

	

Process k;	

}	

// x = no. of adjacent equal pairs in s[0..s.length()-1]	

What is the invariant?	

A.  x = no. adj. equal pairs in s[1..k]	

B.  x = no. adj. equal pairs in s[0..k]	

C.  x = no. adj. equal pairs in s[1..k–1]	

D.  x = no. adj. equal pairs in s[0..k–1]	

// invariant:	

for s = ‘ebeee’, x = 2.	

k: next integer to process.���
Which ones have been���
processed?	

A.  0..k C. a..k	

B.  0..k–1 D. a..k–1	

// set x to no. of adjacent equal pairs in s[0..s.length()-1]	

 Command
to do

something
and

equivalent
post-

condition	

11	

Being careful	

// { String s has at least 1 char }	

// Set c to largest char in String s 	

// inv: 	

for (int k= ; k < s.length(); k= k + 1) {	

	

// Process k;	

}	

// c = largest char in s[0..s.length()–1] 	

c is largest char in s[0..k–1]	

1. What is the invariant?	

2. How do we initialize c
and k?	

A.  k= 0; c= s.charAt[0];	

B.  k= 1; c= s.charAt[0];	

C.  k= 1; c= s.charAt[1];	

D.  k= 0; c= s.charAt[1];	

E.  None of the above	

An empty set of characters or integers has no maximum. Therefore,	

be sure that 0..k–1 is not empty. Therefore, start with k = 1.	

Command	

 postcondition	

