
1	

1	

CS1110 15 Oct 2009 Another classy lecture ���
Casting about (secs 4.2, 4.3)	

1.  the class hierarchy	

2.  apparent and real classes	

3.  casting between classes	

4.  operator instanceof	

5.  function equals	

Reading for next time: Sec. 2.3.8 and chapter 7 on loops. 	

A4 due Friday	

Time management tip #42: schedule deadlines on your calendar; 	

also schedule the time it will take to do the work.	

2	

b0	

Acct	

Gm	

Gm(String)���
alert(String)���
newClip(String)	

nid ���
Acct(String)���
alert(String) getID()	

ac1	

b1	

Acct	

Hm	

Hm(String)���
alert(String)���
popUp(String)	

nid ���
Acct(String)���
alert(String) getID()	

jp2	

Object	

Acct	

Gm	

 Hm	

the class hierarchy:	

Setting: maintaining
Cornell email accounts
(Acct). 	

Two kinds so far:
GMail (Gm) and
Hotmail (Hm).	

Both Gm and Hm override method
alert(String), presumably in an
application-specific way. 	

(Gmail might show a new “Web clip”,
whereas Hotmail might create a popup). 	

3	

b0	

Acct	

Gm	

Gm(String)���
alert(String)���
newClip(String)	

nid ���
Acct(String)���
alert(String) getID()	

ac1	

b1	

Acct	

Hm	

Hm(String)���
alert(String)���
popUp(String)	

nid ���
Acct(String)���
alert(String) getID()	

jp2	

b0	

The apparent (declared) type of a is Acct,
and will always be Acct.	

This is a syntactic property having to do with
compiling.	

g	

Gm	

b1	

h	

Hm	

a	

 b0	

Acct	

The real type of a, the real class of the
object whose name is currently in a, is Gm,
but could change via assignment: a= h; 	

This is a semantic property having to do with the
current value of a.	

4	

Implicit casting up the class hierarchy (good news)	

b1	

Acct	

Hm	

Hm(String)���
alert(String)���
popUp()	

nid ���
Acct(String)���
alert(String) getID()	

jp2	

h has apparent type Hm,
but our list v has an apparent type based on Acct. 	

Does this mean we must do an explicit cast to add h to v?	

 v.add((Acct) h); 	

b0 b14 …	

Vector<Acct> v	

 0 1 2 …	

b1	

h	

Hm	

Nope; luckily, casts up the hierarchy are automatic, allowing this:	

 v.add(h);	

5	

b0	

Acct	

Gm	

Gm(String)���
alert(String)���

newClip(String)	

nid ���
Acct(String)���
alert(String) getID()	

ac1	

b1	

Acct	

Hm	

Hm(String)���
alert(String)���
popUp(String)	

nid ���
Acct(String)���
alert(String) getID()	

jp2	

b0 null b1	

Vector<Acct> v	

 0 1 2	

More good news:	

Overriding (still) has the correct behavior	

v.get(0).alert() will call the over-riding,
Gmail-specific alert() method. 	

v.get(2).alert() will call the over-riding,
Hotmail-specific alert() method.	

6	

b0	

Acct	

Gm	

Gm(String)���
alert(String)���

newClip(String)	

nid ���
Acct(String)���
alert(String) getID()	

ac1	

b1	

Acct	

Hm	

Hm(String)���
alert(String)���
popUp(String)	

nid ���
Acct(String)���
alert(String) getID()	

jp2	

b0 null b1	

Vector<Acct> v	

 0 1 2	

A sensible policy with an embedded “gotcha”:
The apparent type can rule out some available
methods.	

The apparent type of v, based on Acct,
does not have a newClip method.	

Therefore, the compiler rules the call
v.get(0).newClip(“FLOOD”)
illegal, even though in practice, the real
type of v.get(0) might mean that
newClip(…) would be available. 	

2	

7	

b0	

Acct	

Gm	

Gm(String)���
alert(String)���

newClip(String)	

nid ���
Acct(String)���
alert(String) getID()	

ac1	

b1	

Acct	

Hm	

Hm(String)���
alert(String)���
popUp(String)	

nid ���
Acct(String)���
alert(String) getID()	

jp2	

b0	

a	

Workaround: check the real type.	

If we insist on calling newClip at all costs,
then we need fresh variables of the right
apparent type (Gm, not Acct).	

To assign correctly to these fresh
variables, we need to check the real type:	

 if (a instanceof Gm) {	

 Gm newG= (Gm) a;	

 …	

}	

Acct	

need this cast	

(can’t just wedge “big” class into small)	

 8	

Example	

public class Acct {	

 // If Acct is a Gm, apply newClip,	

 o.w, do nothing. (instance method just for lecture)	

 public void tryNewClip(Acct a, String msg) {	

 if (!) 	

 return;	

 // a is a Gm	

 return g.newClip(msg);	

}	

Apparent type of a: Acct���
Real type of a: Gm	

Gm(String)���
alert(String)���
 newClip(String)	

b0	

Acct	

Gm	

nid ���
Acct(String)���
alert(String) getID()���
tryNewClip(Acct, String)	

ac1	

tryNewClip: 1	

 b1	

a	

 b0	

 g	

 b0	

Acct	

 Gm	

// downward cast	

Gm g= (Gm) a ;	

Here, (Hm) a ���
would lead to a runtime
error.	

Don’t try to cast an
object to something that
it is not!	

(a instanceof Gm)	

9	

The correct way to write method equals 	

public class Acct { 	

 …	

 /** = “h is an Acct with the same���
 values in its fields as this Acct */	

 public boolean equals (Object h) {	

 if (!(h instanceof Acct)) return false;	

 Acct a= (Acct) h;	

 return nid == a.nid;	

}	

Acct	

b0	

Gm(String)���
alert(String)���
 newClip(String)	

Gm	

nid ���
Acct(String)���
alert(String) getID()���
alert(String) getName()���

ac1	

Object	

equals(Object)	

Note that method equals should take
arbitrary Objects as arguments.	

