A game

. while there is room Aand B
]_..J.--] L Adraws — or , ; alternate
B draws --- or I —

A wants to get a solid closed curve.

B wants to stop A from getting a solid
closed curve.

Who can win? What strategy to use?

Board can be any size: m by n o
dots, withm>0,n>0 i

A won the game to the right
because there is a solid closed

M

‘We develop recursive functions and
look at execution of recursive functions

CS1110 6 Oct 2008
More on Recursion

Study Sect 15.1, p. 415. Watch activity 15-2.1 on Next time:
the CD. In DrJava, write and test as many of the Casting about.
self-review exercises as you can (disregard those Il s St

. 42and 43 i
that deal with arrays). o te::

Geometry test

3. Find x.

3cm

/** = non-negative n, with commas every 3 digits Executing
e.g. commafy(5341267) = “5,341 267" */ recursive
public static String commafy(int n) { function
1:if (n < 1000) return “” + n; calls.

// n>= 1000
2: return commafy(n/1000) + “,” + t03(n%1000);
}

/#% =p with at least 3 chars — | commafy(5341266 + 1) |
0’s prepended if necessary */
public static String to3(int p) {
if (p < 10) return “00” + p;
if (p < 100) return “0” + p; commafy: 1 ‘ ‘ Demo

return “” +p;
n[]

¥

Recursive functions

/** = a copy of s in which s[0..1] are swapped, s[2..3] are
swapped, s[3..4] are swapped, etc. */

public static String swapAdjacent(String s)
Properties:

/¥% = b €. Precondition: ¢ = 0%/ c wr el

public static int exp(int b, int c) MbT =Db*b
(2) For ¢ even

b€ = (b*b) c/2

eg 3*3¥3H3%3%34343

= (3¥3)*(3¥3)*(33)*(3%3)

Recursive functions

/#% = b ©. Precondition: ¢ = 0%/ ¢ number of calls
public static int exp(int b, int c¢) { 0 1
if (c=0) 1 2
return 1;)
if (c is odd) 4 3
return b * exp(b, c-1);
/I ¢ is even and > 0 8 4
return exp(b*b, ¢/ 2); 16 5
3 32 6
2" n+1

32768 is 215
0 b32768 peeds only 16 calls!

Binary arithmetic

Decimal Binary OctalDec Binary

00 00 00 20=1 1

01 01 01 21=2 10

02 10 02 22=4 100

03 11 03 25=8 1000

04 100 04 24=16 10000
05 101 05 25=32 100000
06 110 06 20 =64 1000000
07 111 07 215 =32768 1000000000000000
08 1000 10

09 1001 11 Testcodd: Test last bit = 1
10 1010 12

Exponentiation algorithm processes binary rep. of the exponent.

Divide ¢ by 2: Delete the last bit

Subtract 1 when odd: Change last bit from 1 to 0.

6

Hilbert’s space-filling curve

Hilbert(1): [

As the size of each

line gets smaller and

smaller, in the limit,

Hilbert(2): this algorithm fills
every point in space.
Lines never overlap.

Hm-1)| |H@-1)

. dwn dwn
Hilbert(n):

H(n-1) H(n-1)
left right]

Hilbert’s space-filling curve

]

