
1	

1	

CS1110 1 October. Recursion	

Recursion: If you get the point, stop; otherwise, see Recursion.
Infinite recursion: See Infinite recursion.

Read: pp. 403-408 but SKIP sect. 15.1.2

Look in ProgramLive CD, page 15-3, for some
interesting recursive methods.

Download presented algorithms from the website

Recursive definition: A definition that is defined in terms of itself.	

Recursive method: a method that calls itself (directly or indirectly).	

Recursion is often a good alternative to iteration (loops), which we
cover later. Recursion is an important programming tool. Functional
languages have no loops —only recursion.

/** = the number of ‘e’s in s */	

public String noe(String s) {	

 if (s.length() == 0) {	

 return 0;	

 }	

 // { s has at least one char }	

}	

2	

	

 	

 	

	

Called the base case	

Called the recursive case	

Express the answer with the same	

terminology as the specification,	

but on a smaller scale:	

number of ‘e’s in s = (s[0] = ‘e’ ? 1 : 0) +	

 number of ‘e’s in s[1..]	

return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1)); 	

Notation:	

s[i] shorthand for

s.charAt[i].	

s[i..] shorthand for
s.substring(i).	

s	

0 1 s.length()	

3	

Two issues in	

coming to grips with recursion	

1. How are recursive calls executed?	

2. How do we understand a recursive method and how do we
create one?	

We discussed the first issue earlier. If you execute a call on a
recursive method carefully, using our model of execution, you will
see that it works. Briefly, a new frame is created for each recursive
call. We do this in the next lecture.	

DON’T try to understand a recursive method by executing its
recursive calls! Use execution only to understand how it works.	

4	

Step 1: HAVE A PRECISE SPECIFICATION	

// = number of ‘e’s in s	

public static int noe(String s) {	

 if (s.length() == 0) { 	

 	

 	

	

	

return 0; 	

 	

 base case	

 }	

 // {s has at least one character} recursive case (has a recursive call)	

 // return (s[0] = ‘e’ ? 1 : 0) + number of ‘e’s in s[1..]; 	

	

 return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1)); 	

} 	

 	

 	

 	

	

Step 2: Check the base case.	

When s is the empty string, 0 is returned.	

So the base case is handled correctly.	

Understanding a recursive method	

Notation:	

s[i] shorthand for

s.charAt[i].	

s[i..] shorthand for
s.substring(i).	

5	

s = “” 	

 	

 	

 base case	

s has at least one character recursive case	

Step 3: Recursive calls make progress toward termination.	

// = number of ‘e’s in s	

public static int noe(String s) {	

 if (s.length() == 0) { 	

 	

 	

	

	

return 0; base case	

 }	

 // {s has at least one character} recursive case (has a recursive call)	

 return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1)); 	

} 	

 	

 	

 	

	

argument s[1..] is smaller than	

parameter s, so there is progress	

toward reaching base case 0	

parameter s	

argument s[1..]	

Step 4: Recursive case is correct.	

Understanding a recursive function	

6	

Creating a recursive method	

Task: Write a method that removes blanks from a String.	

0. Specification:	

/** = s but with its blanks removed */	

public static String deblank(String s)	

1. Base case: the smallest String s is “”.	

 if (s.length() == 0)	

	

return s;	

2. Other cases: String s has at least 1 character.	

 return (s[0] == ‘ ’ ? “” : “”) + s[1..] with its blanks removed	

precise spec!	

Notation:	

s[i] shorthand for

s.charAt[i].	

s[i..] shorthand for
s.substring(i).	

2	

7	

// = s but with its blanks removed	

public static String deblank(String s) {	

 if (s.length() == 0) return s;	

 // {s is not empty}	

 if (s[0] is a blank)	

	

return s[1..] with its blanks removed	

 // {s is not empty and s[0] is not a blank}	

 return s[0] + (s[1..] with its blanks removed);	

}	

The tasks given by the two English, blue expressions are similar to the
task fulfilled by this function, but on a smaller String! Rewrite each as	

 deblank(s[1..]) .	

Creating a recursive method	

Notation:	

s[i] shorthand for

s.charAt[i].	

s[i..] shorthand for
s.substring(i).	

8	

// = s but with its blanks removed	

public static String deblank(String s) {	

 if (s.length == 0)	

	

return s;	

 // {s is not empty}	

 if (s.charAt(0) is a blank)	

	

return deblank(s.substring(1));	

 // {s is not empty and s[0] is not a blank}	

 return s.charAt(0) + 	

 	

 deblank(s.substring(1));	

}	

Check the four points:	

0. Precise specification?	

1. Base case: correct?	

2. Recursive case: progress toward termination?	

3. Recursive case: correct?	

Creating a recursive method	

9	

Check palindrome-hood	

A String with at least two characters is a palindrome if	

(0) its first and last characters are equal, and	

(1) chars between first & last form a palindrome:	

 e.g. AMANAPLANACANALPANAMA	

/** = “s is a palindrome” */	

public static boolean isPal(String s) {	

 if (s.length() <= 1)	

 return true;	

 // { s has at least two characters }	

 return s.charAt(0) == s.charAt(s.length()-1) &&	

 isPal(s.substring(1, s.length()-1));	

 }	

have to be the same	

has to be a palindrome	

10	

A man, a plan, a caret, a ban, a myriad, a sum, a lac, a liar, a hoop, a pint, a catalpa, a gas, an
oil, a bird, a yell, a vat, a caw, a pax, a wag, a tax, a nay, a ram, a cap, a yam, a gay, a tsar, a
wall, a car, a luger, a ward, a bin, a woman, a vassal, a wolf, a tuna, a nit, a pall, a fret, a watt,
a bay, a daub, a tan, a cab, a datum, a gall, a hat, a fag, a zap, a say, a jaw, a lay, a wet, a
gallop, a tug, a trot, a trap, a tram, a torr, a caper, a top, a tonk, a toll, a ball, a fair, a sax, a
minim, a tenor, a bass, a passer, a capital, a rut, an amen, a ted, a cabal, a tang, a sun, an ass,
a maw, a sag, a jam, a dam, a sub, a salt, an axon, a sail, an ad, a wadi, a radian, a room, a
rood, a rip, a tad, a pariah, a revel, a reel, a reed, a pool, a plug, a pin, a peek, a parabola, a
dog, a pat, a cud, a nu, a fan, a pal, a rum, a nod, an eta, a lag, an eel, a batik, a mug, a mot, a
nap, a maxim, a mood, a leek, a grub, a gob, a gel, a drab, a citadel, a total, a cedar, a tap, a
gag, a rat, a manor, a bar, a gal, a cola, a pap, a yaw, a tab, a raj, a gab, a nag, a pagan, a bag,
a jar, a bat, a way, a papa, a local, a gar, a baron, a mat, a rag, a gap, a tar, a decal, a tot, a led,
a tic, a bard, a leg, a bog, a burg, a keel, a doom, a mix, a map, an atom, a gum, a kit, a
baleen, a gala, a ten, a don, a mural, a pan, a faun, a ducat, a pagoda, a lob, a rap, a keep, a
nip, a gulp, a loop, a deer, a leer, a lever, a hair, a pad, a tapir, a door, a moor, an aid, a raid, a
wad, an alias, an ox, an atlas, a bus, a madam, a jag, a saw, a mass, an anus, a gnat, a lab, a
cadet, an em, a natural, a tip, a caress, a pass, a baronet, a minimax, a sari, a fall, a ballot, a
knot, a pot, a rep, a carrot, a mart, a part, a tort, a gut, a poll, a gateway, a law, a jay, a sap, a
zag, a fat, a hall, a gamut, a dab, a can, a tabu, a day, a batt, a waterfall, a patina, a nut, a flow,
a lass, a van, a mow, a nib, a draw, a regular, a call, a war, a stay, a gam, a yap, a cam, a ray,
an ax, a tag, a wax, a paw, a cat, a valley, a drib, a lion, a saga, a plat, a catnip, a pooh, a rail,
a calamus, a dairyman, a bater, a canal ---Panama!	

11	

Tiling Elaine’s kitchen	

Elaine has a 2n by 2n
kitchen. One square of it
is covered by a 1 by 1
refrigerator. Tile the
kitchen with these kinds
of tiles:	

2n	

2n	

12	

Tiling Elaine’s kitchen	

/** tile a 2n by 2n kitchen. */ ���
public static void tile(int n) {	

 if () 	

}	

2n	

2n	

