
1	

1	

CS1110 Stepwise refinement, more on classes 24 Sep 2009	

Application of String processing
and stepwise refinement. 	

Miscellaneous points about classes.���

Prelim 7:30pm-9:00pm Thursday, 8 Oct (we’ll announce which
students should go to Olin 255 and which to Upson B17 later)	

 If you have a conflict but did not receive an acknowledgment
email yesterday, email mwitlox@cs.cornell.edu ASAP to tell
Maria Witlox what your conflict with the CS1110 prelim is.	

Review session: 1-3pm Sunday, 3 Oct., Phillips 101	

Next time: Wrapper
classes (Section 5.1)	

Have your iclickers out. 	

Reminders: finish revising A1s; A3 due Wed at midnight;	

pick up uncollected quizzes up front.	

 2	

Help: Get it now if you need it!! Operators are standing by!!!	

•See http://www.cs.cornell.edu/courses/cs1110/2009fa/staff.html for
drop-in office hours and making appointments with Prof Gries,
Prof Lee or any of the 5 graduate TAs;

or click the link at the bottom of that page to view the consultants’
evening drop-in hours schedule.

• Free peer tutoring for engineering students is available: ask in Olin
167 or see
http://www.engineering.cornell.edu/student-services/learning/peer-
tutoring/index.cfm

3	

iClicker continuous-feedback experiment	

All through class, try updating us on your “status”:	

A.  I get it, and you could speed up.	

B.  I get it, but don’t go any faster, it’s perfect.	

C.  I’m getting most but not all of it, but prefer that

you just keep going anyway.	

D.  Could you repeat that just once more?	

E.  I’m totally lost.	

4	

An application: String processing, stepwise refinement	

Strings are a particularly important data structure, because lots
of information (especially non-numerical data) is stored in
Strings.

For example, many webpages can, for many intents and
purposes, be considered to be Strings.

Application: tracking live stock quotes from the Web.

5	

Reminder: Principles and strategies	

Develop algorithm step by step, using principles and strategies
embodied in “stepwise refinement” or “top-down
programming”. READ Sec. 2.5 and Plive p. 2-5.	

• Take small steps. Do a little at a time	

• Refine. Replace an English statement (what to do) by a
sequence of statements to do it (how to do it).	

• Refine. Introduce a local variable —but only with a reason	

• Compile often	

• Intersperse programming and testing	

• Write method specifications —before writing the bodies	

• Separate your concerns: focus on one issue at a time	

6	

Odds and ends on classes: outline of remainder of lecture	

Issues related to sub-classes:	

•  Inheriting fields and methods and overriding methods.
Purpose of super and this. (Sec. 4.1 and 4.1.1: pp. 142–145)	

• Constructors in a subclass —calling a constructor of the	

 super-class. (Sec. 4.1.3, pp. 147–148)	

[There are a few more things regarding classes to learn after this, but we will
handle them much later.]

More than one constructor in a class; another use of this.	

 (Sec. 3.1.3, pp. 110–112)	

2	

7	

Why provide more than one constructor? 	

public Organism(int lev, int m, String nn) { …}	

Sec. 3.1.3,
page 110	

Doing so is better for the user. 	

From A1 (we assume you remember the specs): 	

So, the user can write new Organism(4) instead of 	

new Organism(4, 0, null). 	

 public Organism(int lev) { 	

 Organism(lev, 0, null);	

 }	

For the programmer, 	

it’d be great to have the one-parameter constructor call the other:	

We wish we could say this!	

 public Organism(int lev) { …}	

But you HAVE to do it “this” way.
Here, this refers to the other constructor. 	

this(lev, 0, null);	

8	

Issues related to sub-classes	

The ability to extend existing subclasses to reuse/refine existing
behavior is a terrific aspect of object-oriented programming.	

Example: modeling sulfur bacteria as photosynthesizing organisms
that come in purple or green variations. (Thank you, Wikipedia.) 	

…	

a0	

Object	

level	

 0	

SBact(String) getColor() 	

eat(Organism) toString() 	

equals(Object) toString() 	

Organism	

SBact	

color	

“green”	

eat(Organism) toString() getLevel() 	

Organism(int) Organism(int, int, String) 	

…	

…	

sb	

 a0	

We want sb.eat(victim) to
have the effect appropriate
for sulfur bacteria (i.e.,
nothing happens) rather
than the effect appropriate
for generic Organisms.	

…	

9	

For the call sb.eat(v),
which method eat is
called?	

Overriding rule or���
bottom-up rule:���
Start at the bottom of the
class and search upward
until a matching method is
found.	

Terminology. SBact inherits methods and fields from
Organism. Sbact overrides eat and toString.	

Sec. 4.1,
page 142	

sb	

 a0	

a0	

Object	

level	

 0	

SBact(String) getColor() 	

eat(Organism) toString() 	

equals(Object) toString() 	

Organism	

SBact	

color	

 “green”	

eat(Organism) toString() getLevel() 	

Organism(int) Organism(int, int, String) 	

…	

…	

…	

10	

Purpose of super and this	

Suppose we’re overriding a method in order to modify it just a bit; so,
we’d like to refer to the overridden method.	

The word super refers only to components in the partitions above it.	

/** = String like A3 requires for
Organism, but with “<green/
purple> SBact. ” in front. */	

public String toString() {	

 return getColor()	

 + “ SBact. “ 	

 + super.toString();	

}	

necessary 	

Sec. 4.1, pages 144-145	

a0	

Object	

level	

 0	

SBact(String) getColor() 	

eat(Organism) toString() 	

equals(Object) toString() 	

Organism	

SBact	

color	

 “green”	

eat(Organism) toString() getLevel() 	

Organism(int) Organism(int, int, String) 	

…	

…	

…	

this refers to the name of the object in which it appears.
We could have written this.getColor(), but it wasn’t necessary to.	

11	

Calling (reusing) a
superclass constructor from
the subclass constructor	

public class SBact extends Organism {	

 private String color; 	

 /** Constructor: A sulfur bacterium of color c
[etc. Full program will be posted.]*/	

 public SBact(String c) {	

 super(0); /* default Org. values,	

	

 * lowest level */ 	

 color= c;	

 }	

}	

 The first (and only the first) statement in

a constructor has to be a call to a
constructor of the superclass. If you
don’t put one in, then this one is
automatically used:	

	

super();	

This corresponds to a natural principle: Fill in superclass fields first.	

Sec. 4.1.3, page 147	

a0	

Object	

level	

 0	

SBact(String) getColor() 	

eat(Organism) toString() 	

equals(Object) toString() …	

Organism	

SBact	

color	

“green”	

eat(Organism) toString() … 	

Organism(int) 	

 …	

…	

…	

