CS1110 Stepwise refi t, more on classes 24 Sep 2009

Application of String processing Next time: Wrapper
and stepwise refinement. classes (Section 5.1)

Miscellaneous points about classes.
Prelim 7:30pm-9:00pm Thursday, 8 Oct (we’ll announce which
students should go to Olin 255 and which to Upson B17 later)

If you have a conflict but did not receive an acknowledgment
email yesterday, email mwitlox@cs.cornell.edu ASAP to tell
Maria Witlox what your conflict with the CS1110 prelim is.

Review session: 1-3pm Sunday, 3 Oct., Phillips 101

Have your iclickers out.
Reminders: finish revising Als; A3 due Wed at midnight;
pick up uncollected quizzes up front.

Help: Get it now if you need it!! Operators are standing by!!!

*See http://www.cs.cornell.edu/courses/cs1110/2009fa/staff.html for
drop-in office hours and making appointments with Prof Gries,
Prof Lee or any of the 5 graduate TAs;

or click the link at the bottom of that page to view the consultants’
evening drop-in hours schedule.

« Free peer tutoring for engineering students is available: ask in Olin
167 or see

tutoring/index.cfm

iClicker continuous-feedback experiment

All through class, try updating us on your “status”:

. T getit, and you could speed up.

. T getit, but don’t go any faster, it’s perfect.

. I’'m getting most but not all of it, but prefer that
you just keep going anyway.

D. Could you repeat that just once more?

E. I'm totally lost.

QW >

An application: String pr

stepwise refi t

Strings are a particularly important data structure, because lots
of information (especially non-numerical data) is stored in
Strings.

For example, many webpages can, for many intents and
purposes, be considered to be Strings.

Application: tracking live stock quotes from the Web.

Reminder: Principles and strategies

Develop algorithm step by step, using principles and strategies
embodied in “stepwise refinement” or “top-down
programming”. READ Sec. 2.5 and Plive p. 2-5.

* Take small steps. Do a little at a time

* Refine. Replace an English statement (what to do) by a
sequence of statements to do it (how to do it).

* Refine. Introduce a local variable —but only with a reason
* Compile often

* Intersperse programming and testing

* Write method specifications —before writing the bodies
 Separate your concerns: focus on one issue at a time

Odds and ends on classes: outline of remainder of lecture

More than one constructor in a class; another use of this.
(Sec.3.1.3, pp. 110-112)

Issues related to sub-classes:

« Inheriting fields and methods and overriding methods.

Purpose of super and this. (Sec. 4.1 and 4.1.1: pp. 142-145)

*Constructors in a subclass —calling a constructor of the
super-class. (Sec. 4.1.3, pp. 147-148)

[There are a few more things regarding classes to learn after this, but we will
handle them much later.]

Why provide more than one constructor? Gec.3.1.3,
Doing so is better for the user. page 110
From Al (we assume you remember the specs):
public Organism(int lev, int m, String nn) { ...}
public Organism(int lev) { ...}

So, the user can write new Organism(4) instead of
new Organism(4, 0, null).

For the programmer,
it’d be great to have the one-parameter constructor call the other:

public Organism(int lev) {

Organismdev, 0,nulh- this(lev, 0, null);

oA
We wish we could say this! But you HAVE to do it “this” way.
Here, this refers to the other cunstruc;or.

sb Sec. 4.1,

20 page 142
For the call sb.eat(v), :
which method eat is equals(Object) toString() ... Obiset
called? X
o level 0 Organism
Overriding rl:le or Organism(int) Organism(int, int, String)
bottom-up rule: eat(Organism) toStrin; etLevel()
Start at the bottom of the
< » SBact
class and search upward color “green
until a matching method is = SBact(String) getColor()
found. eat(Organism) toString()

Terminology. SBact inherits methods and fields from
Organism. Sbact overrides eat and toString.

Issues related to sub-classes

The ability to extend existing subclasses to reuse/refine existing
behavior is a ferrific aspect of object-oriented programming.
Example: modeling sulfur bacteria as photosynthesizing organisms
that come in purple or green variations. (Thank you, Wikipedia.)

a0
equals(Object) toString()

level m \w‘ We want sb.eat(victim) to

Organism(int) Organism(int, int, String have the effect appropriate
for sulfur bacteria (i.e.,
nothing happens) rather
than the effect appropriate
for generic Organisms.

SBact(String) pet
eat(Organism) toString()

8

Purpose of super and this Sec. 4.1, pages 144-145
Suppose we’re overriding a method in order to modify it just a bit; so,
we’d like to refer to the overridden method.

The word super refers only to components in the partitions above it.

a0
/#* = String like A3 requires for

Organism, but with “<greeq/ . . Object
purple> SBact. ” in front. */ GOl BT oo
public String toString() { Organism

return getColor()
+“ SBact. ©
+ super.toString();

int) Organism(int, int, String)

SBact(Strin getColor()

necessary
eat(Organism) ™ toString()

this refers to the name of the object in which it appears.
We could have written this.getColor(), but it wasn’t necessary to.

Calling (reusing) a public class SBact extends Organism {
superclass constructor from private String color;
the subclass constructor /** Constructor: A sulfur bacterium of color ¢
Sec.4.1.3, page 147 [etc. Full program will be posted.]*/
public SBact(String c) {
a0 super(0); /* default Org. values,
* lowest level */

equals(Object) toStl'ing()O.].)Ject color= c;
level 0 Organism } The first (and only the first) statement in
Organism(int) ... } a constructor has to be a call to a
eat(Organism) toString() ... constructor of the superclass. If you
) ., SBact don’t put one in, then this one is
color”green automatically used:

SBact(String) getColor()

eat(Organism) toString() super();

This corresponds to a natural principle: Fill in superclass fields first.
11

