CS1110 22 September 2009 Today: Turn in A2.

Inside-out rule; use of this, super Pick up: A3 &

Developing methods (using Strings). Today’s slides
Read sec. 2.5, stepwise refinement

Listen to Plive, 2.5.1-2.54. You can do A3 in

groups of 2,

Reading for next lecture: the same ‘ BUT GROUP

EARLY ON CMS

Rsrecah on spleilng

Aoccdrnig to a rscheearch at Cmabirgde Uinervtisy, it deosn't
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is that the frsit and Isat Itteer be at the rghit
pclae. The rset can be a total mses and you can sitll raed it
wouthit porbelm.Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

Remember frame boxes and figuring out variable references?
The inside-out rule (see p. 83)

Code in a construct can reference any of the names declared or defined
in that construct, as well as names that appear in enclosing constructs.
(If a name is declared twice, the closer one prevails.)

virusPop I:l

a0
namg [_][Virus

al
getNMdPop() { P/ -
return name + virusPp; namg] rus

i

getNameAqdPop()
return name + virusPop;

}

File drawer for class Virus 2

Method parameters participate in the inside-out rule: remember the frame.

[0] []
name[] \V“-L name [] \““L

setName(String p) { setName(String name) {
name= ny namc{a:e‘%
¥ ¥

Parameter n would be Parameter name “blocks”
found in the frame for the the reference to the
method call. field name.

A solution: this and super
Within an object, this evaluates to the name of the object.

In folder a0, In folder al,
this refers to a0 this refers to al

?‘ virusPop I:l

- al » al
Virus H - Virus

name[] name_]

setName(String n:}me) {
this.name= name;

setName(String ngmc) {
=+ this.name= name;

File drawer for class Virus 4

About super

Within a subclass object, super refers to the partition above the one
that contains super.

]

Object
method equals()

method toString() Because of the

Elephant keyword super, this

. calls toString in the
toSt
oString() { ... } Object partition.

otherMethod { ...
... super.toString() ...

¥

Strings are (important) objects that come with useful methods.

Text pp. 175-181 discusses Strings
Look in CD ProgramLive
Look at API specs for String

String s="abc d";

Note the “index (number)

from 07 scheme: s.length() is 5 (number of chars)

01234 s.charAt(2) is'c' (char at index 2)
abc d s.substring(2,4) is "c " (NOT “c d”)
s.substring(2) is "c 4"

" bed ".trim() is "bed" (trim
beginning and ending blanks)

DO NOT USE == TO TEST STRING EQUALITY!

s == t tests whether s and t contain the name of the same object, not
whether the objects contain the same string.

Use s.equals(t)

Principles and strategies embodied in stepwise refinement

Develop algorithm step by step, using principles and strategies
embodied in “stepwise refinement” or “top-down programming.
READ Sec. 2.5 and Plive p. 2-5.

* Take small steps. Do a little at a time

* Refine. Replace an English statement (what to do) by a
sequence of statements to do it (how to do it).

* Refine. Introduce a local variable —but only with a reason
* Compile often

* Intersperse programming and testing

* Write a method specification —before writing its body

* Separate concerns: focus on one issue at a time

* Mafana principle: next slide

Principles and strategies

* Manana Principle.

During programming, you may see the need for a new method.
A good way to proceed in many cases is to:

1. Write the specification of the method.

2. Write just enough of the body so that the program can be
compiled and so that the method body does something
reasonable, but no the complete task. So you put off completing
this method until another time —mafiana (tomorrow) —but you
have a good spec for it.

3. Return to what you were doing and continue developing at

that place, presumably writing a call on the method that was just
“stubbed in”, as we say.

Anglicizing an Integer

anglicize(“1”) is “one”
anglicize(“15”) is “fifteen”
anglicize(“123”) is “one hundred twenty three”
anglicize(“10570”) is “ten thousand five hundred seventy”

/** = the anglicization of n.

Precondition: 0 < n < 1,000,000 */
public static String anglicize(int n) {

i

‘We develop this function, in DrJava, using the principles
and strategies of stepwise refinement (also called top-
down programming).

