CS1110 17 September 2009

Congratulations!! You now know the basics of OO (object-orientation).

Discussion of Methods: Executing method
calls. If-statements. The return statement in a
function. Local variables.

For this and next lecture: Read chapter 2,
but NOT 2.3.8!!!!
Do the self-review exercises in 2.3.4

Please sit next to

someone. We will

do some work in
pairs today.

The last slide concerns local variables —variables declared
within a method body. We don’t have time to discuss them.
You are responsible for knowing about local variables. Read
pp. 76-78 (sec. 2.3.7).

Take advantage: see videos of the 11:15 lecture for CS1110

on www.VideoNote.net. Log in with your Cornell netid

/** Have this Organism eat victim.
Precondition: victim is not null and
this Organism is alive ... */

public void eat(Organism victim)

A note on
assignment A1

Strategy: To gain understanding, develop test cases.

Substrategy: Draw the objects, filling in (only) the relevant
components, and determine how they should be changed.

b.eat(v);
= pla] v [2] o

alive [Organism | | ative [Organism |
mercury @ eatenBy mercurym eatenBy
numVictims numVictims @

eat(victim){ ... ¥ eat(victim{ ... 3

Java problem: Method in
want to store al in v.eatenBy.

A note on
assignment A1

Solution: Java expression this has as its value the name of the

object in which it appears. See page 109-110.

b.eat(v);

[a1]

oful]

2]

v [2]

alive
meCUf)’@ eatenBy
numVictims

eat(victim){ .. this... }

Organism

alive
meCUf)’m eatenBy
num Victims @

eat(victim) . this... J

Organism

We write programs in order to do things.
Methods are the key “doers”.
/** Constructor: a chapter with title t,
number n, and previous chapter null.*/
public Chapter(String t, int n) {
title= t;
number= n;
previous= null;

Within the body
(between { }),
execute the
assignments in the
order in which they
parameters: appear. (“Follow the
tand n recipe”.)

}

declaration of
parameter t

Memorize: a parameter is a variable that is declared
within the parentheses of a method header.

But how is a method call executed?
How do parameters and arguments work?

The frame (the box) for a method call

Remember: Every method is in a folder (object) or in a file-drawer.

method name: instruction counter

local variables (don’t eal with these now)

parameters

@e box

Draw the
parameters
as variables.

number of the statement of
method body to execute next.
Helps you keep track of what
statement to execute next.
Start off with 1.

scope box contains
the name of entity
that contains the
method —a file
drawer or object.

To execute the call x.setAmt(50);

1. Draw a frame for the call.
2. Assign the value of the argument
to the parameter (in the frame).

3. Execute the method body. (Look
for variables in the frame; if not
there, look in the place given by
the scope box.)

4. Erase the frame for the call.

Account
X0 accoun

The scope box contains:
For an instance method, the name of the object in which it resides
For a static method, the name of the class in which it is defined |

amt

setAmt(int newAmt) {amt= newAmt;}

getAmt() {...} 5

To execute the call cash=y.getAmt();

1. Draw frame for call.
2. Assign value of argument to
parameter (in the frame).

3. Execute the method body. (Look for
variables in the frame; if not there, look
in the place given by the scope box.)

4. Erase the frame for the call; use the value of the
return-statement expression as the function-call value.

I -
am
cash|:| int setAmt(int newAmt) {...}
getAmt() {return amt;} 7

new Chapter(“Intro”, 1)

1. Draw a frame for the call.
2. Assign arg values to pars.
3. Execute the method body.

4. Erase the frame for the call.

e
number D previous

Chapter(String, int) {
String d=t; title=d;
number=n; previous= null;

Note local variable d declared
within method body. It should
¥ be drawn in frame for call.

/* swap X,y to put larger /* Put smaller of X,y in z */

iny */ if x<y){
if (x>y){ zZ=X;
int t; }
t=x; if statement else { if-else statement
X=Y; z=Y;
y=t b
' Syntax:
Syntax: if (<boolean expression>)
if (<boolean expression>) <statement1>
<statement> else <statement2>
Execution: if the <boolean Execution: if the boolean
expression> is true, then expression is true, then execute
execute the <statement> <statement1>;
otherwise, execute <statement2>
9

Idiom: if statements and multiple return staements

/** = smallest of b, ¢, d */
public static int smallest(int b, int, c, int d) {

if(b<=c &&b<=d){ Execution of statement

return b; return <expr> ;
} terminates execution of
// { The smallest is either ¢ or d } thelprocedinrelbodyland
X yields the value of
if (c<=d) { <expr> as result of
return c; function call

}

/1 { the smallest is d }

return d; Assertion

}

Execution of function body must end by

areturn

Syntax of procedure/function/constructor and calls

public <result type> <name> (<parameter declarations>) { ... } function
public void <name> (<parameter declarations>) { ... } procedure
public <class-name> (<parameter declarations>) { ... } constructor

Exec. of a function body must terminate by executing a statement
“return <exp>;”, where the <exp> has the <result type>.

Exec. of a proc body may terminate by executing statement “return ;”

Exec. of a constructor body initializes a new object of class <class-name>.

<name> (<arguments>) function call
<name> (<arguments>) ; procedure call
new <class-name> (<arguments>) constructor call

<arguments>: <expression>, <expression>, ..., <expression>

Scope of local variable: the sequence of statements following it within
the containing “block”.
/** = the max of x and y */
public static int max(int x, int y) {
// Swap x and y to put the max in x

if(x<y){

int temp; scope of temp

temp= X;

X=y; ,

y= temp; You can’t use temp down here
} This is an error.
return x;

i

