
1

1

CS1110 10 Sept. Customizing a class & testing

Quiz 2 on Tuesday 15 Sept �
Purpose of a constructor (slide 5)�
Evaluating a new expression (slide 6)

•  Fields; getter & setter methods.�
Secs 1.4.1 (p. 45) & 3.1 (pp. 105–110 only)

•  Constructors. Sec. 3.1.3 (p. 111–112)

•  Testing methods. Appendix I.2.4 (p. 486)

Next time:

Testing using JUnit.

Object: the superest
class of them all. pp

153–154.

Function toString.

Static components�
 Sec. 1.5 (p. 47).

Assignment A1 out, due Friday 18 Sept �
Writing and testing a class definition

Labs and one-on-ones (schedule yours on CMS) will help you with it.

2

Field: a variable that is in each folder of a class.

a0

Worker
name
 …

ssn
 …

boss
 …

We generally make fields private instead of public, so methods that
are outside the class can’t reference them. (Slightly confusingly at first, you
can access them in the DrJava interactions pane.)

public class Worker {

}

/** An instance is a worker in a certain organization. */

Declarations of fields

 private String name; // Last name (null if unknown/none)

 private int ssn; // Social security #: in 0..999999999

 private Worker boss; // Immediate boss (null if none)

3

Getter and setter methods

a0

Worker
name
 …

ssn
 …

boss
 …

In the definition of Worker

(we post our code on the website):

 /** = worker’s last name*/

 public String getName() {

 return name;

 }

 /** Set worker’s last name to n */

 public void setName(String n) {

 name= n;

 }

 /** = last 4 SSN digits, as an int*/

 (Try writing it yourself.

 Should there also be a setter? What
about for boss?)

Getter methods (functions) get
or retrieve values from a folder.

Setter methods (procedures) set
or change fields of a folder

getName() setName(String t)

4

Initialize fields when a folder is first created

We would like to be able to use
something like

 new Worker(“Obama”, 1, null)

to create a new Worker, set the last
name to “Obama”, the SSN to
000000001, and the boss to null.

For this, we use a new kind of�
method, the constructor.

a0

Worker
name
 …

ssn
 …

boss
 …

getName() setName(String t)
…

5

Purpose of a constructor:�
 To initialize (some) fields of a newly created object

In the class definition of Worker:

 /** Constructor: an instance with last
name n, SSN s (an int in 0..999999999,
and boss b (null if none) */

 public Worker(String n, int s,�
 Worker b) {

 name= n;

 ssn= s;

 boss= b;

 }

a0

Worker
name
 …

ssn
 …

boss
 …

getName() …

Worker(String n, �
 int s, Worker b)

The name of a constructor: the name of the class.

Do not put a type or void here

6

New description of evaluation of a new-expression

new Worker(“Obama”, 1, null)

1.  Create a new folder of class�

Worker, with fields initialized to
default values (e.g. 0 for int) –of
course, put the folder in the file
drawer.

2. Execute the constructor call

 Worker(“Obama”, 1, null)

3. Use the name of the new object

as the value of the new-
expression.

a0

Worker
name
 …

ssn
 …

boss
 …

getName() setName(String
t)

Worker(String t, �
 int i, Worker c) …

Memorize this new definition! Today! Now!

2

7

Testing —using JUnit

Bug: Error in a program.

Testing: Process of analyzing, running program, looking for bugs.

Test case: A set of input values, together with the expected output.

Debugging: Process of finding a bug and removing it.

Get in the habit of writing test cases for a method from the
method’s specification --- even before you write the method’s
body.

A feature called Junit in DrJava helps us develop test cases
and use them. You have to use this feature in assignment A1.

8

1. w1= new Worker(“Obama”, 1, null);

 Name should be: “Obama”; SSN: 1; boss: null.

2. w2= new Worker(“Biden”, 2, w1);

 Name should be: “Biden”; SSN: 2; boss: w1.

To create a testing framework: select menu File item new Junit
test case…. At prompt, put in class name WorkerTester. This
creates a new class with that name. Save it in same directory as
class Worker.

The class imports junit.framework.TestCase, which provides
some methods for testing.

Need a way to run these test cases, to see whether the fields
are set correctly. We could use the interactions pane, but then
repeating the test is time-consuming.

Here are two test cases

9

/** A JUnit test case class.

 * Every method starting with "test" will be called when running

 * the test with JUnit. */

public class WorkerTester extends TestCase {

 /** A test method.

 * (Replace "X" with a name describing the test. Write as

 * many "testSomething" methods in this class as you wish,�
 * and each one will be called when testing.) */

 public void testX() {

 }

}
 One method you can use in testX is

assertEquals(x,y)

which tests whether expected value x equals y

10

A testMethod to test constructor and getter methods

/** Test first constructor and getter methods getName,

 getSSN4, and getBoss*/

public void testConstructor() {

 Worker w1= new Worker(”Obama", 123456789, null);

 assertEquals("Obama”, w1.getName(),);

 assertEquals(6789, w1.getSSN4());

 assertEquals(null, w1.getBoss());

 Worker w2= new Worker(”Biden", 2, w1);

 assertEquals(”Biden”, w2.getName());

 assertEquals(2, w2.getSSN4());

 assertEquals(w1, w2.getBoss());

}

Every time you click button Test in
DrJava, this method (and all other
testX methods) will be called.

first
test
case

second
test
case

assertEquals(x,y):

test whether x equals y ;
print an error message
and stop the method if
they are not equal.

x: expected value,�
y: actual value.

A few other methods that
can be used are listed on
page 488.

