Assignment A7 BREAKOUT CS1110 Fall 2009

This assignment, including much of the wording of this document, is taken from
an assignment from Stanford University, by Professor Eric Roberts.

Please keep track of the time you spent on this assignment. We will ask for it when
it is time to submit.

Your task is to write the classic arcade game Breakout. The assignment will use
the acm graphics package, which was used in AS5. The assignment is easily within
your grasp —as long as you break the problem up into manageable pieces and pro-
gram and test incrementally. The decomposition is discussed in this handout, and,
later, we give several suggestions for staying on top of the project .

Our solution to this assignment is about 320 lines long and has 11-12 methods
(including main and run).

Breakout

The initial configuration of the game Breakout is shown above on the right. The
colored rectangles in the top part of the screen are bricks, and the slightly larger rec-
tangle at the bottom is the paddle. The paddle is in a fixed position in the vertical di-
mension; it moves back and forth horizontally across the screen along with the mouse
—aunless the mouse goes past the edge of the window.

A complete game consists of three turns. On each turn, a ball is launched from the
center of the window toward the bottom of the screen at a random angle. The ball
bounces off the paddle and the walls of the world, in accordance with the physical
principle generally expressed as “the angle of incidence equals the angle of reflec-
tion” (it’s easy to implement). The start of a possible trajectory, bouncing off the pad-
dle and then off the right wall, is shown to the right. (The dotted line is there only to
show the ball’s path and won’t actually appear on the screen.)

In the second diagram, the ball is about to collide with a brick on the bottom row.
When that happens, the ball bounces just as it does on any other collision, but the
brick disappears. The third diagram shows the game after that collision and after the
player has moved the paddle to put it in line with the oncoming ball.

The play on a turn continues in this way until one of two conditions occurs:

1. The ball hits the lower wall, which means that the player missed it with the
paddle. In this case, the turn ends. If the player has a turn left, the next ball is
served; otherwise, the game ends in a loss for the player.

2. The last brick is eliminated: the player wins, and the game ends.

Clearing all the bricks in a particular column opens a path to the top wall. When
this delightful situation occurs, the ball will often bounce back and forth several times
between the top wall and the upper line of bricks without the user having to worry
about hitting the ball with the paddle. This condition, a reward for “breaking out”,
gives meaning to the name of the game. The fourth diagram on the right shows the
situation shortly after the first ball has broken through the wall. The ball goes on to
clear several more bricks before it comes back down the open channel.

Breaking out is an exciting part of the player’s experience, but you don’t have to
do anything special in your program to make it happen. The game is simply operating
by the same rules it always applies: bouncing off walls, clearing bricks, and otherwise
obeying the laws of physics.

Partners

You may work with one partner. Both of you should do what is necessary on the
CMS to form a group several days before the submission deadline. It is dishonest and
against academic integrity to split the work so that each does half of the work. You
must work together the whole time.

Due midnight Fri 4 Dec on the CMS 1

i

Assignment A7 BREAKOUT

File Breakout.java

We give you file Breakout.java, which is the only
Java class that you will have to write. A partial skeleton
of it appears to the right, to give you the basic idea. The
class includes:

» The import statements needed in writing the game.

» The named constants that control the game pa-
rameters, such as the dimensions of the various ob-
jects. Your code should use these constants internally
so that changing them in your file changes the behav-
ior of your program accordingly.

« A static method main that starts the application
program and sets the window to the appropriate size.
Run the program from the Interactions window of
DrJava by executing

Breakout.main (null);

The acm package

This assignment uses the same package used in A5,
so we don’t say much about it. Here are API specs for
the package: http://jtf.acm.org/javadoc/student/
index.html. So that you can study these packages and

CS1110 Fall 2009

Due midnight Fri 4 Dec on the CMS

import acm.graphics.*;

/** An instance is the game breakout. Start it by

executing
Breakout.main(null); */

public class Breakout extends GraphicsProgram {

/** Width of the game display */
private static final int WIDTH= 450;
/** Height of the game display */
private static final int HEIGHT= 610;

/** Width of the paddle */

private static final int PADDLE WIDTH= 60;

/** Height of the paddle */

private static final int PADDLE HEIGHT= 10;

/*¥* Offset of the paddle up from the bottom */

private static final int
PADDLE Y BOTTOM_ OFFSET= 30;

/** Run the program as an application. Parameter
args is not used. */
public static void main(String[] args) {
String[] sizeArgs= { "width="+ WIDTH,
"height="+ HEIGHT };

classes in them while you are not on the internet, we
provide the html files in downloadable form on the)
course website, but not all the images are included.
Click on docs/index.html to see the documentation.

new Breakout().start(sizeArgs);

/* Run the Breakout program. */
public void run() {

Class Breakout is a subclass of class Graph- // Initialize and play the game.

icsProgram. Method main creates an instance of the
class and then calls method start of the instance, }
which is inherited from GraphicsProgram. }

GraphicsProgram also declares procedure run,
which is overridden in class Breakout. Execution of start (sizeArgs) constructs the basic GUI window and
then calls procedure run. Your job is to write the body of procedure run (and any other methods you need) to ini-
tialize the GUI with bricks and paddle and ball and then play the game.

Success in this assignment will depend on breaking up the problem into manageable pieces and getting each one
working before you move on to the next. The next sections describe a reasonable, staged, approach to the problem.
If you follow our advice and test each piece thoroughly before proceeding to the next, you should be successful.

An important part of your programming will be to develop new methods whenever you need them, in order to
keep each method small and manageable. You must precisely specify each method you write, and you should do this
before writing the method body. We will not accept assignments do not provide a class invariant or do not specify
methods precisely and thoroughly. You need not write loop invariants, although doing so will help you.

What to download

File breakout.zip, on the course webpage for this assignment, contains everything you need, including file
Breakout.java. Download it, unzip it, and load file Breakout.java into DrJava. In folder docs, click on index.html to
load the API specifications of package acm.graphics (and a few others) into your browser.

Set up the bricks

The first step is to write the code that puts the various pieces on the playing board. Thus, it probably makes sense
to implement procedure run as two method calls: one that sets up the game and one that plays it. An important part
of the setup consists of creating rows of bricks at the top of the game, which are shown on the next page.

http://jtf.acm.org/javadoc/student/index.html
http://jtf.acm.org/javadoc/student/index.html
http://jtf.acm.org/javadoc/student/index.html
http://jtf.acm.org/javadoc/student/index.html

Assignment A7 BREAKOUT CS1110 Fall 2009 Due midnight Fri 4 Dec on the CMS 3

The number, dimensions, and spacing of the bricks, as well as the distance
from the top of the window to the first line of bricks, are specified using named
constants given in class Breakout. The only value you need to compute is the || s —————
x coordinate of the first column, which should be chosen so that the bricks are
centered in the window, with the leftover space divided equally on the left and |E=E=smsms=mmmmm—a———
right sides. Hint: the leftmost brick should be placed at x-coordinate
BRICK SEP H/2. The colors of the bricks remain constant for two rows and
run in the following sequence: RED, ORANGE, YELLOW, GREEN, CYAN.

All objects placed on the playing board are instances of subclasses of ab-
stract class GObject. The bricks and paddle are objects of subclass GRect.
Look at class GRect and find a constructor that allows you to create a GRect
object at a particular position, width, and height. Use it.

To add GRect object r (say) to the playing board, call inherited procedure
add (r) . To start off, you might want to create a single GRect object of some
position and size and add it to the playing board, just to see what happens. Then
think about how you can place the 8 rows of bricks.

You need to fill a GRect with a particular color and also to set its color so that its outline is the same color (in-
stead of black). Look for methods to do this. In order to allow the object to be filled with a color, use a procedure
call like rect.setFilled (true) ;.

Here is an important point. You do not need an array or Vector to keep track of all the bricks. Just add the bricks
to the playing board as you create them, and do not be concerned about keeping track of them. Later, you will see
why you don’t need to keep them in an array or Vector.

Here is another important point. Make sure your creation of the rows of bricks works with any number of bricks
in each row —1, 2, ..., 10, and perhaps more. Remember, static variable NBRICKS PER_ROW contains the number
of bricks per row, and NBRICK ROWS contains the number of rows —it may help when testing to make this less
than 10.

Here’s a suggestion: Get this part of the program working by November 24 or so, so that you can produce just
the diagram shown above to the right. This will give you considerable confidence that you can get the rest done. And
you’ll be well on your way before time gets short.

Create the paddle

Now create the black paddle. You will need to reference the paddle often, so declare it as a private field of type
GRect. A public static variable of class Breakout gives its vertical position relative to the bottom of the window.

Here’s how to make the paddle track the mouse (horizontally only). Declare a procedure like this:

/** Move the horizontal middle of the paddle to the x-coordinate of the
mouse position --but keep the paddle completely on the board. */
public void mouseMoved (MouseEvent e) {
GPoint p= new GPoint (e.getPoint());

}

So, you are overriding inherited procedure mouseMoved. This procedure is called whenever the mouse is
moved. Parameter e has a function getPoint, and the assignment we give you in the body stores in p the coordi-
nates of the point where the mouse currently is. Replace the three dots by code that changes the x-coordinate of the
paddle as indicated in the specification, using the x-coordinate of point p. Be careful that the paddle stays com-
pletely on the board even if the mouse moves off the board. Our code for this is 3 lines long; it uses function
Math.min and Math.max.

Why don’t you get this part of the program working by Saturday, 28 November?

Create a ball and make it bounce off the walls

You are now past the “setup” phase and into the “play” phase of the game. A ball is just a filled GOval. The
interesting part lies in getting it to move and bounce appropriately. To start, create a ball and put it in the center of

Assignment A7 BREAKOUT CS1110 Fall 2009 Due midnight Fri 4 Dec on the CMS 4

the window. You probably want a private field ball of type GOval to contain the ball, since you will have to refer
to it often. Keep in mind that the coordinates of the GOval specify the upper left corner and not the center of the
ball.

The play phase of the game should contain a loop, each iteration of which (1) moves the ball a bit, (2) changes
direction if it hits a wall, and (3) pauses for 10 milliseconds, using pause (10) ;. The program needs to keep track
of the velocity of the ball, which consists of its horizontal (x) component and its vertical (y) component, which you
declare as fields like this:

private double vx, wvy; // give their meaning in a comment!
These velocity components represent the change in position that occurs on each time step (each loop iteration).

Initially, the ball should head downward, so use a starting velocity of +3.0 for vy. The game would be boring if
every ball took the same course, so choose component vx randomly. You can read about random numbers in the
text, but for now, simply do the following:

1. Declare a field rgen, which will serve as a random-number generator:
private RandomGenerator rgen= new RandomGenerator();
2. Initialize variable vx as follows:

vx= rgen.nextDouble (1.0, 3.0);
if (rgen.nextBoolean(0.5)) vx= -vx;

This code sets vx to be a random double in the range 1.0 to 3.0 and then makes it negative half the time.

Your next challenge is to get the ball to bounce off the walls of the playing board, ignoring entirely the paddle
and the bricks. To do this, after moving the ball one step, by (vx, vy), do the following. Suppose the ball is going
up. Then, if any part of the ball has a y-coordinate <= 0, the ball has reached the top and its direction has to be
changed so that it goes down, by setting vy to —vy. Check the other three sides in the same fashion. When you have
finished this, the ball will bounce around the playing board forever —until you stop it.

You have to figure out whether the ball has reached (or gone over) the other three sides. Remember that the loca-
tion of a GOval is the top-left corner of its bounding box.

Checking for collisions

Now comes the interesting part. In order to make Breakout into a real game, you have to be able to tell when
the ball collides with another object in the window. As scientists often do, we make a simplifying assumption and
then relax the assumption later. Suppose the ball were a single point (x, y) rather than a circle. The call

getElementAt (x,Vy)

of inherited function getElementAt does this: (1) return null if no graphical object covers point (x, y) and (2)
return the (name on the tab of) the GObject that covers point (x, y), if some GObject actually covers the point.
(If several GObjects cover the point, the one that appears to be in front on the display is returned.)

Suppose getElementAt returns (the name on the tab of) a GObject gob. If gob == paddle, you know
the paddle has collided with the single-point ball at (x, y).If gob != paddle and gob != null, then gob
must be a brick, since the only objects on the board should be bricks and the paddle. So, we have just explained how
to test whether a single-point ball has collided with the paddle or a brick.

But the ball is not a single point. It occupies physical area, so it may collide with something on the screen even
though its center does not. The easiest thing to do —which is typical of the simplifying assumptions made in real
computer games— is to check a few carefully chosen points on the outside of the ball and see whether any of those
points has collided with anything. As soon as you find something at one of those points (other than the ball of
course) you can declare that the ball has collided with that object.

Assignment A7 BREAKOUT CS1110 Fall 2009 Due midnight Fri 4 Dec on the CMS 5

The easiest thing to do is to check the four corner points on the square
in which the ball is inscribed. A GOval is defined in terms of its bounding
rectangle, so that if the upper left corner of the ball is at the point (x, v),
the other corners are at the locations shown in the diagram to the right (r is
the radius of the ball). These points have the advantage of being outside the (x,y + 2r) @
ball, so that getElementAt can’t return the ball itself. But they are close
enough to make it appear that a collision has occurred.

*x,y)e

® (x +2ry)

o (x +2ry +2r)

So, you need to check the four corners, one at a time; if one of them collides with the paddle or a brick, stop the
checking immediately and proceed as if a collision occurred. We suggest that you write a function

GObject getCollidingObject ()

that returns the object involved in the collision with the ball (or null if none). Call this function once, each time the
ball is moved.

If the ball going up collides with the paddle, don’t do anything. If the ball going down collides with the paddle,
then negate the vertical direction of the ball. If the ball (going in either vertical direction) collides with a brick, re-
move the brick from the board and negate the vertical direction. Inherited function remove (gob) can be used to
remove object gob.

Finishing up

The basic parts are now done. A few more details have to be taken care of, and these may cause you to reorgan-
ize procedure run. Think carefully about the following tasks and how you want to design the final program before
proceeding.

1. Take care of the case that the ball hits the bottom wall. Right now, the ball just bounces off this wall like all
the others, but hitting the bottom wall is supposed to mean that the ball is gone. In one game, the player should
get three balls before losing. If the player can have another ball, put a message on the board somewhere (use a
GLabel object), telling the player that another ball is coming in 3 seconds, pause for 3 seconds, remove the
message, and continue with a new ball.

2. Check for hitting the last brick, in which case the player wins. An easy way to do this is to keep track of how
many bricks are left on the board; when there are none, the game ends and the player has won.

3. When a game ends, place a message somewhere on the window (use a GLabel object).

4. Experiment with the settings that control the speed of your program. How long should you pause in the loop
that updates the ball? Do you need to change the velocity values to get better play action?

5. Test your program to see that it works. Play for a while and make sure that as many parts of it as you can
check are working. If you think everything is working, try this: Just before the ball is going to pass the paddle
level, move the paddle quickly so that the paddle collides with the ball rather than vice-versa. Does everything
still work, or does your ball seem to get “glued” to the paddle? If you get this error, try to understand why it
occurs and how you might fix it.

Strategy and tactics
Here are some survival hints for this assignment:

1. Start as soon as possible. If you wait until the day before this assignment is due, you will have a very hard
time completing it. If you do one part of it every 2—4 days, you will enjoy it and get it done on time. The hard
part may be “finishing up” —designing the final reorganization in order to incorporate three balls in a game.

2. Implement the program in stages, as described in this handout. Don’t try to get everything working all at once.
Make sure that each stage is working before moving on to the next stage.

3. Set up a milestone schedule. We have suggested some milestones for you, but make up your own schedule, and
leave time for learning things and asking questions. There may be points about package acm.graphics that you
will have to learn by yourself.

4. Don 't try to extend the program until you get the basic functionality working (see the next section). If you add
extensions too early, debugging may get very difficult.

Assignment A7 BREAKOUT CS1110 Fall 2009 Due midnight Fri 4 Dec on the CMS 6

Possible extensions

There are many ways —and fun ways— to extend this assignment. Add more and we will be a bit more lenient
with grading than if you implement the bare minimum. But note that a submission that does not have a good class
invariant and good specifications for the methods will not be looked at kindly under any circumstances.

1. Let the player play as many games as they want. The player could click the mouse button to start a new game.
A call on inherited procedure waitForClick () will wait (or pause) until the mouse is clicked.

2. Play a sound whenever the ball hits a brick. This is an easy extension. Breakout.zip contains an audio file
bounce.au. You can load it by writing

AudioClip bounceClip= MediaTools.loadAudioClip ("bounce.au");

and play it by calling bounceClip.play () ;. The sound might get obnoxious after a while, so figure out a
way to let the user turn it off (and on).

3. Improve user control over bounces. The program gets rather boring if the only thing the player has to do is hit
the ball. Let the player control the ball by hitting it with different parts of the paddle. For example, suppose the
ball is coming down toward the right (or left). If it hits the left (or right) 1/4 the paddle, the ball goes back the
way it came (both vx and vy are negated)

4. Add in the kicker. The arcade version of Breakout lures you in by starting off slowly. But as soon as you
think you are getting the hang of things, the ball speeds up, making life more exciting. Implement this in some
fashion, perhaps by doubling the horizontal velocity of the ball on the seventh time it hits the paddle.

5. Keep score. Display the score (number of bricks destroyed) underneath the paddle, but remember, a GLabel
is an object, and the ball hitting it should have no effect. Perhaps you can make the bricks in the higher rows
more valuable.

6. Use your imagination. What else have you always wanted a game like this to do?

Submitting your assignment

Before the due date, (1) Put a comment at the top of class Breakout that contains the time you spent on this
project, and also give a brief overview of any extensions you added to it. (2) ADD a comment that gives your opin-
ion of this assignment --whether it was educational, interesting, exciting, loads of fun, to easy, too long, horribly
described, how we could improve it, etc.

Submit file Breakout.java on the CMS.

