CS1110 Fall 2009 Assignment A3
More on mercury in the food chain

Submit on the CMS by midnight on Wednesday, 30 September

Introduction
For assignment A1, you wrote a Java class, Organism and a JUnit test class
OrganismTester. The purpose was to:

e Gain familiarity with DrJava and the structure of a basic class within a record-keeping
scenario (a common type of application)

e Work with examples of good Javadoc specifications to serve as models for your later
code

e Learn to write class invariants
e Learn the code format conventions for this course

e Learn and practice incremental coding and testing

e Learn about preconditions of a method, which need not be tested

In this assignment, you will add fields and methods to your correct solution to A1, testing as you program. We expect you to continue to use
what you learned in doing Al. We expect you to continue to include the class invariant and javadoc specifications of all methods. We expect
you to program and test in an incremental fashion. In addition, this assignment has the following new learning objectives:

Learning objectives

e Learn how keeping the class invariant true may require you to change fields in more than one object
e Learn to use functions you have already written (and tested) to save time and promote modularity

e Learn to write boolean expressions that use short-circuit evaluation (look it up in the text)

e Learn about the use of null --and testing for it

e Learn to use static variables

NO iterative grading feedback (no revise-and-resubmit cycle)

But there will be no iterative feedback on this assignment. You now know our guidelines and how we grade, so there should be no need for
iterative feedback. We will deduct points where our guidelines are not followed and for errors in your program. Your test cases will also be
graded.

Groups

You may do this assignment with one other person. If you do this, both of you must visit the CMS and do what has to be done in order to
group yourselves. One person will invite the other using CMS, and the other will then respond using CMS. Do this well before you submit the
assignment. You create a mess for yourselves and for us when you submit and then realize that you have not yet grouped.

Getting help

If you need help, please SEE SOMEONE IMMEDIATELY —a course instructor, a TA, a consultant. Do not wait. A little in-person help can
do wonders. See the Staff page on the course homepage, www.cs.cornell.edu/courses/cs1110, for contact information.

How to do this assignment
For the purpose of this assignment, you may not use if-statements or loops, and you can use conditional expressions only in function toString.

Read the whole assignment before starting. Start with your answer to assignment al, which should be correct. Add more components to
Organism and test methods by adding more tests to OrganismTester as indicated below. This incremental development/testing will
help you complete this programming task quickly and efficiently. If we detect that you did not develop it this way, we may ask you to start
from scratch and do a different assignment.

Whenever you write a method (see below), look through the class invariant and convince yourself that class invariant still holds when the
method terminates. This habit will help you catch or prevent bugs

Step 1: Add another constructor. Add a constructor with the specification given below. After adding it, start a new testing procedure in
OrganismTester and add tests to it that ensure that all fields are properly set by the new constructor. Add tests to ensure that parameter
eater's number of victims and amount of mercury are properly maintained. Hint: Rely on previously written methods; don't reprogram
something you already programmed.


http://www.cs.cornell.edu/courses/cs1110/

Constructor Description (and suggested javadoc specification)

Organism(int lev, int m, Constructor: a new Organism at food-chain level lev containing m units of methylmercury; its
String nn, nickname is nn. This new Organism has not eaten any Organism and is immediately eaten by eater.
Organism eater) Precondition: nn has at least 1 character, lev is non-negative, m is non-negative, and eater is not

null.

Step 2: Add a toString function. As you know, a parameterless toString function produces a String representation of the object in which it
appears. Write function toString in class Organism. The String that it returns must obey the following requirements exactly, down to the
number of spaces and punctuation.

The general format of the output is indicated by the following two examples, but read a-d below for exceptions:
Organism (nickname tasty), level 1, mercury content 4, 0 victims, eaten by jaws.
Organism level 2, mercury content 2, 1 victim.

where

a. Exactly one blank separates each piece of information, and commas and periods appear exactly as written.

b. In the first example above, the organism has nickname "tasty". If the organism has no nickname, then " (nickname tasty)," should be
omitted entirely, as shown in the second example.

c. If the organism has exactly 1 variation, then the word "victim" should be used instead of "victims", as shown in the second example.

d. If the organism is still alive, omit the phrase ", eaten by jaws", as shown in the second example. If the organism has been eaten but
the eater has no nickname, the phrase should be ", eaten by". (This looks a little strange but, for the purposes of this assignment, leads
to simpler solutions).

In function toString, (but nowhere else), you may use conditional expressions; you may not use if-statements. The general form of a
conditional expression is

(boolean-expression ? expressionl : expression2)

(the parentheses are not needed but are generally included). It is evaluated as follows: if boolean-expression evaluates to true, the value of the
conditional epression is the value of expressionl; otherwise, it is the value of expression2. An example usage is this: (x>0 ? x : -x), which
evaluates to the absolute value of x.

Your test case(s) for toString must test every part of toString. Your function toString is probably more complex than the previous methods you
have written, so your testing will probably need to be more elaborate. You need to test that everything is correct for important different
combinations of inputs —think about what kinds of situations would call for significantly different outputs of toString, and test whether your
toString indeed produces such outputs.

It is a good practice to write function toString before writing elaborate methods, because toString can be quite helpful for debugging.

Step 3: Add comparison functions. Start a procedure in OrganismTester that will test the three functions described in the table below. Then
deal with the three functions one at a time: write test cases for it, write the function, and test it. The second and third functions must be static.
In writing these, you may not use the if-statement or the conditional expression; you must rely on boolean expressions.

function Description (and suggested javadoc specification) return type
isHigherThan(Organism org) | = "orgis not null and this organism is at a higher level than boolean
org."
isHigherThan(Organism orgl, | = "orgl is not null and org2 is not null and orgl is at a higher boolean

Organism org2) | level than org2."

eatenBySame(Organism orgl, | = "orgl and org2 are not null and were eaten by the same

Organism org2) | Organism." boolean

Note that whether org is null or not makes a difference in the output; org == null is not a precondition. The specification of the first function
is equivalent to: if org is not null and this organism is at a higher level than org, return true; otherwise, return false.

Here is a principle to keep in mind: If an argument of a call can be null, then one should have a test case for it. Keep this in mind when
constructing your test cases.

The body of the second isHigherThan function is best written in terms of a call on the first one; write it that way.



Step 4. Add a static variable and test its use. We want your program to keep track of the number of organisms that are created. To do this,
add a private static int variable that will contain the number of organisms created and add a static getter method getNumberOfOrganisms that
will return the number of organisms created. Then, change your program so that whenever an Organism is created, the static variable is
incremented by 1, thus helping to ensure that your program is maintaining the class invariant.

Finally, add test cases in OrganismTester to make sure that the static variable is properly maintained. You will encounter problems if you
assume that the field has a particular value at any point during testing, because you don't know the order in which testing methods are called.
Therefore, to test it, you should test the change in the static field, as follows: (1) save the value of the field in a local variable, (2) do
something to create a new Organism, and (3) test whether the static field increased by 1 --the saved value will help.

Submitting assignment A3
Do the following:

1. Click the Javadoc button in DrJava and examine the output. You should see your method and class specifications. Read through them
from the perspective of someone who has not read your code, and fix them if necessary so that they are appropriate to that perspective.
You must be able to understand everything there is to know about making a call on each method from the specification that you see by
clicking the Javadoc button —without knowing anything about the private fields. Then and only then, add a comment to the top of
your code saying that you checked the Javadoc output and it was OK.

2. Review the learning objectives and re-read this document to make sure your code conforms to our instructions. Make sure the class
invariant is OK, the method specs are OK, no line is too long, there is a blank line between each pair of methods, the lines are
properly indented, and so on.

3. Upload files Organism.java and OrganismTester.java on the CMS. Do not submit any files with the extension/suffix .java~ (with the
tilde) or .class. It will help to set the preferences in your operating system so that extensions always appear.


http://cms.csuglab.cornell.edu/

