
1

1

CS1110 7 October 2008�
More on Recursion

My first job was working in an orange juice factory, �
but I got canned: couldn't concentrate.

Then I worked in the woods as a lumberjack, but I �
just couldn't hack it, so they gave me the axe.

After that I tried to be a tailor, but I just wasn't suited �
for it. Mainly because it was a so-so job.

Next I tried working in a muffler factory but that was
 exhausting.

I worked as a pilot but eventually got grounded for �
taking off too much.

Then I tried teaching but I couldn't make the grade.

We derive recursive functions.

Study Sect 15.1, p. 415. Watch activity 15-2.1 on the CD. In
 DrJava, write and test as many of the self-review exercises as
 you can (disregard those that deal with arrays).

Get more of
 these from the
 course website

2

Geometry test

3

Recursive functions

/** = a copy of s in which s[0..1] are swapped, s[2..3] are
 swapped, s[3..4] are swapped, etc. */

public static String swapAdjacent(String s)

/** = b c. Precondition: c ≥ 0*/�
public static int exp(int b, int c)

Properties:

(1)   b c = b * b c-1

(2)   For c even

b c = (b*b) c/2

e.g 3*3*3*3*3*3*3*3

 = (3*3)*(3*3)*(3*3)*(3*3)

4

Recursive functions

/** = b c. Precondition: c ≥ 0*/�
public static int exp(int b, int c) {

 if (c = 0)

 return 1;

 if (c is odd)

 return b * exp(b, c–1);

 // c is even and > 0

 return exp(b*b, c / 2);

}

c number of calls

0 1

1 2

2 2

4 3

8 4

16  5

32 6

2n n + 1

32768 is 215

so b32768 needs only 16 calls!

5

Binary arithmetic

Decimal Binary
 Dec

Binary Oct

00
 00

 20 = 1
 1

0

01
 01

 21 = 2

10

1

02
 10

 22 = 4

100

2

03
 11

 23 = 8

1000

04
 100

 24 = 16

10000

05
 101

 25 = 32

100000

06
 110

 26 = 64

1000000

07
 111

 215 = 32768
1000000000000000
7

08
 1000

10

09
 1001

11

10
 1010

12

Test c odd: Test last bit = 1

Divide c by 2: Delete the last bit

Subtract 1 when odd: Change last bit from 1 to 0.

Exponentiation algorithm processes binary rep. of the exponent.
 6

Hilbert’s space-filling curve

Hilbert(1):

Hilbert(2):

Hilbert(n):

H(n-1)�
left

As the size of each
 line gets smaller and
 smaller, in the limit,

 this algorithm fills
 every point in space.
 Lines never overlap.

H(n-1)�
dwn

H(n-1)�
dwn

H(n-1)�
right

2

7

Hilbert’s space-filling curve

