
1

1

CS1110 23 September 2008

More on Methods. Developing methods.

Also: The inside-out rule; and the use of this and super

Read sec. 2.5 on stepwise refinement

Listen to PLive activities, 2.5.1 — 2.5.4!

Quotes that relate to specifying a method before writing it.

A verbal contract isn't worth the paper it's written on.

What is not on paper has not been said.

If you don't know where you are going, any road will take you there.

If you fail to plan you are planning to fail.

Don’t try to solve a problem until you know what the problem is.

Prelim: Tues 30 Sep,
 7:30 to 9:00

Review: Sun 28 Sep,
 1–3, Phillips 101

2

Inside-out rule

Inside-out rule in most programming languages (see p. 83):

Code in a construct can reference any of the names declared or defined
 in that construct, as well as names that appear in enclosing constructs
 (unless a name is declared twice, in which case the closer one prevails).

File drawer for class Elephant

Elephant

a0

name

getName()

 {return name;}

Elephant

a0

name

getName()

 {return name;}

ElephantPop

3

Inside-out rule

Inside-out rule in most programming languages (see p. 83):

Code in a construct can reference any of the names declared or defined
 in that construct, as well as names that appear in enclosing constructs
 (unless a name is declared twice, in which case the closer one prevails).

File drawer for class Elephant

setName(String n) {

 name= n;

}

Elephant

a0

 n

Elephant Pop

name

setName(String n) {

 name= n;

}

Elephant

a0

 n

name

4

Inside-out rule

Inside-out rule in most programming languages (see p. 83):

Code in a construct can reference any of the names declared or defined
 in that construct, as well as names that appear in enclosing constructs
 (unless a name is declared twice, in which case the closer one prevails).

File drawer for class Elephant

Elephant Pop

setName(String name) {

 name= name;

}

Elephant

a0

name

name

setName(String name) {

 name= name;

}

Elephant

a1

name

name

5

About using this and super

Within an object, this refers to the name of the object itself,

File drawer for class Elephant

Elephant Pop

setName(String name) {

 this.name= name;

}

Elephant

a0

name

name

setName(String name) {

 this.name= name;

}

Elephant

a1

name

name

In folder a0, this refers
 to folder a0.

In folder a1, this refers
 to folder a1.

6

About using this and super

Within a subclass object, super refers to the object —except the
 lowest partition.

toString() { … }

otherMethod { …

 … super.toString() …

}

Object

a1

Elephant

method equals

method toString

Because of the
 keyword super,
 this calls toString
 in the Object
 partition.

2

7

Strings
 String s= "abc d";
 s
 s2

s2

String

 abc d
01234

length()
charAt(i)

substring(b,e)
substring(b)

equals(s1)
trim()

indexOf(c)
indexOf(s)

toLowerCase()
startsWith(s)

Text, pp. 175–181, discusses Strings

Look in CD ProgramLive

Look at API specs for String

s.length() is 5 (number of chars)

s.char(3) is 'c' (char at position 3)

s.substring(2,4) is "c "

s.substring(2) is "c 4"

" bcd ".trim() is "bcd" (trim beginning

 and ending blanks)

DO NOT USE == TO TEST STRING EQUALITY!

s == t tests whether s and t contain the name of the same object, not
 whether the objects contain the same string.

Use s.equals(t)

equals() toString()

Object

t
 x1

8

Developing another string function

/** Precondition: s contains at least one integer (without sign), and they are

 separated by commas (blanks are permissible after a comma). There are

 no blanks at the beginning and end of s.

 = s but with its first integer removed (remove also following comma,

 if there is one, and following blanks).

 E.g. s = "52, 0, 76385" Return "0, 76385"

 s = "000, 11" Return "11"

 s = "00" Return ""

*/

public static String removeInt(String s)

9

Developing another string function

/** Precondition: s contains at least one integer (without sign), and they are

 separated by commas (blanks are permissible after a comma). There are

 no blanks at the beginning and end of s.

 If the first integer is 0, return s but with its first integer and following ‘,’

 and blanks removed; otherwise, return s.

 E.g. s = "52, 0, 76385" Return s,

 s = "000, 11" Change s to "11".

 s = "00" Change s to "".*/

public static String removeZero(String s)

10

Anglicizing an integer

/** = the English equivalent of n, for 1 <= n < 1,000

 e.g. ang(3) is “three”

 ang(641) is “six hundred forty one” */

public static String ang(int n) {

}

The rest of this lecture is devoted to the beginning of
 the development of an algorithm for anglicizing an
 integer.

The final program will be on the course website after
 Thursday’s lecture.

11

Principles and strategies

Principle: Write a method spec before you write the body.

Mañana Principle: Write the specification of a method and
 “stub” it in, so that it can be compiled and produces something
 that allows further development. Put off its complete
 development until later. (Mañana means tomorrow, or an
 indefinite time in the future.)

Compile often: Compiling often will help you catch syntax
 errors quickly and easily.

Intersperse program development with testing: The worst
 thing you can do is to write a complete program and then
 begin testing. Because if there is an error, you have no idea
 where it is and how to find it. However, if you test each
 method as completely as possible after writing it, then any
 errors should be localized to that method.

