Lecture 12: Binary Numbers

CS 1109 Summer 2024

Philosophical Questions

- Why is our common number system in base-10?
 - A number system is "base-x" if x numbers can be expressed as a single digit
- Possibly because of how many fingers we have?
- 10 may be an arbitrary choice
 - o Why not 5? 12? 26?
- Is it possible that other number systems can be useful?

How does a computer work?

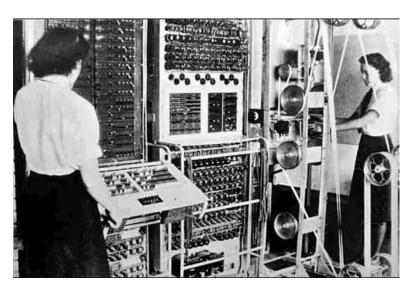
- The basic building block of a modern computer is a transistor
 - o For early computers, it was a vacuum tube

How does a computer work?

- The basic building block of a modern computer is a transistor
 - o For early computers, it was a vacuum tube
 - o Both are functionally similar
- An electrical device with an on and off state
- Why does this matter?

- On/off device necessary building block for binary number system
 - o Binary is base-2
- Off and on can represent two numbers
- 0 = off and 1 = on

• If we combine multiple "light switches", we can create other numbers



= 3

 If we combine multiple "light switches", we can create other numbers

Imagine what we could do with thousands of light

switches

= 1

= 2

= 3

Let's write out the binary for the light switches

5	Switches		Decimal	Binary
	ÖFF	OFF	0	00
	<u>OFF</u>		1	01
		OFF	2	10
		Н	3	11

- Bit portmanteau of "binary digit"
- 1 bit expresses 2 numbers
- 2 bits express 4 numbers
- How many bits to express 8 numbers?
 - o 16?

- Bit portmanteau of "binary digit"
- 1 bit expresses 2 numbers
- 2 bits express 4 numbers
- How many bits to express 8 numbers?
 - o 16?

Binary	Decimal	Binary	Decimal
0000	0	1000	8
0001	1	1001	9
0010	2	1010	10
0011	3	1011	11
0100	4	1100	12
0101	5	1101	13
0110	6	1110	14
0111	7	1111	15

- Bit portmanteau of "binary digit"
- 1 bit expresses 2 numbers
- 2 bits express 4 numbers
- How many bits to express 8 numbers?
 16?
- Every extra bit doubles how many numbers can be expressed

Binary	Decimal	Binary	Decimal
0000	0	1000	8
0001	1	1001	9
0010	2	1010	10
0011	3	1011	11
0100	4	1100	12
0101	5	1101	13
0110	6	1110	14
0111	7	1111	15

What do digits actually represent?

- Example 4096 in decimal
- Each digit position represents the base raised to its position
 - Count positions by zero
- Add all the numbers on last row to get number in decimal

Digit	4	0	9	6
Meaning	Thousands	Hundreds	Tens	Ones
Exponent	10^3	10^2	10^1	10^0
Digit * Exponent	4000	000	90	6

Convert from binary to decimal

- Now do the same with binary
- For instance, 1011

Digit	1	0	1	1
Meaning	Eight	Four	Two	One
Exponent	2^3	2^2	2^1	2^0
Digit * Exponent	8	0	2	1

What do digits actually represent?

- Now do the same with binary to convert to decimal
- For instance, 1011
- Add last row 8 + 2 + 1 = 11
- 1011 in binary is 11 in decimal

Digit	1	0	1	1
Meaning	Eight	Four	Two	One
Exponent	2^3	2^2	2^1	2^0
Digit * Exponent	8	0	2	1

Binary Operations

- Addition
 - Example Add 5 + 9 in binary

Carry-bit		
X		
Υ		
X + Y		

- Addition
 - Example Add 5 + 9 in binary

Carry-bit				
X	0	1	0	1
Υ	1	0	0	1
X + Y				

- Addition
 - Example Add 5 + 9 in binary

Carry-bit			1	
X	0	1	0	1
Υ	1	0	0	1
X + Y				0

- Addition
 - Example Add 5 + 9 in binary

Carry-bit			1	
X	0	1	0	1
Υ	1	0	0	1
X + Y			1	0

- Addition
 - Example Add 5 + 9 in binary

Carry-bit			1	
X	0	1	0	1
Υ	1	0	0	1
X + Y		1	1	0

- Addition
 - Example Add 5 + 9 in binary

Carry-bit			1	
X	0	1	0	1
Y	1	0	0	1
X + Y	1	1	1	0

Addition

- Example Add 5 + 9 in binary
- 0 1110 = 14

Carry-bit			1	
X	0	1	0	1
Υ	1	0	0	1
X + Y	1	1	1	0

- Addition
 - Another example Add 15 + 1 with a nibble (4 digits)

Carry-bit		
X		
Υ		
X + Y		

Addition

Carry-bit				
X	1	1	1	1
Y	0	0	0	1
X + Y				

Addition

Carry-bit			1	
X	1	1	1	1
Υ	0	0	0	1
X + Y				0

Addition

Carry-bit		1	1	
X	1	1	1	1
Y	0	0	0	1
X + Y			0	0

Addition

Carry-bit	1	1	1	
X	1	1	1	1
Υ	0	0	0	1
X + Y		0	0	0

Addition

Carry-bit (1)	1	1	1	
X	1	1	1	1
Y	0	0	0	1
X + Y	0	0	0	0

Addition

- Another example Add 15 + 1 with a nibble (4 digits)
- 0 15 + 1 = 0?!!
- This is integer "overflow"
- Pay attention to integer sizes in other languages

Carry-bit (1)	1	1	1	
X	1	1	1	1
Y	0	0	0	1
X + Y	0	0	0	0

- Addition
- Subtraction (positive numbers only)
 - o Example 11 5

X		
Υ		
X - Y		

- Addition
- Subtraction (positive numbers only)
 - o Example 11 5

X	1	0	1	1
Υ	0	1	0	1
X - Y				

- Addition
- Subtraction (positive numbers only)
 - o Example 11 5

X	1	0	1	1
Υ	0	1	0	1
X - Y				0

- Addition
- Subtraction (positive numbers only)
 - o Example 11 5

X	1	0	1	1
Y	0	1	0	1
X - Y			1	0

- Addition
- Subtraction (positive numbers only)
 - o Example 11 5

X	1 0	10	1	1
Y	0	1	0	1
X - Y		1	1	0

- Addition
- Subtraction (positive numbers only)
 - o Example 11 5

X	40	10	1	1
Y	0	1	0	1
X - Y	0	1	1	0

Basic binary operations

- Addition
- Subtraction (positive numbers only)
 - Example 11 5
 - 0 0110 = 6

X	40	10	1	1
Υ	0	1	0	1
X - Y	0	1	1	0

Basic binary logical operations

- Back to truth tables
- AND

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

Basic binary logical operations

- Back to truth tables
- AND
- OR

Α	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

Basic binary logical operations

- Back to truth tables
- AND
- OR
- NOT

Α	NOT A
0	1
1	0

More Basics

Binary Sizes

Term	Meaning
Bit	One binary digit
Nibble	4 bits
Byte	8 bits
Kilobyte (KB)*	1024 bits
Megabyte (MB)	1024 KB
Gigabyte (GB)	1024 MB
Terabyte (TB)	1024 GB

^{*} Programmer use of metric units. Some places uses kilo to mean 1000 bits. (see here)

Characters

- In most languages and systems, a character type has size 1 byte (8 bits)
 - Python is different because there is no explicit character type, only strings
- Entire 1972 ASCII table can be expressed with 7 bits

Column	0	_	2	3	4	5	6	7
0	NUL	DLE	SP	0	@	Р	`	р
1	SOH	DCI	!	- I	Α	Q	а	q
2	STX	DC2	=	2	В	R	b	r
3	ETX	DC3	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	T	d	t
5	ENQ	NAK	%	5	Ε	υ	е	u
6	ACK	SYN	8.	6	F	٧	f	٧
7	BEL	ETB	`	7	G	W	g	w
8	BS	CAN	(8	Н	X	h	x
9	HT	EM)	9	I	Y	i	У
10	LF	SUB	*	:	J	Z	j	z
П	VT	ESC	+	;	K]	k	{
12	FF	FS	,	<	L	\	ı	
13	CR	GS	_	=	М]	m	}
14	SO	RS		>	N	^	n	~
15	SI	US	/	?	0		0	DEL

Characters

- In most languages and systems, a character type has size 1 byte (8 bits)
 - Python is different because there is no explicit character type, only strings
- Entire 1972 ASCII table can be expressed with 7 bits

b ₇ b ₆ b	7 b 6 b 5					000	° 0 ,	0,0	0 1 1	00	0,	1 0	1 1
Bits	b₄	b₃ ↓	b ₂ ↓	Б -→	Column	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р	`	Р
	0	0	0	1	1	SOH	DCI	!	1	Α	Q	а	q
	0	0	1	0	2	STX	DC2	"	2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	s
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	Ε	U	е	u
	0	1	1	0	6	ACK	SYN	8.	6	F	٧	f	٧
	0	1	1	1	7	BEL	ETB	,	7	G	W	g	w
	1	0	0	0	8	BS	CAN	(8	Н	×	h	x
	1	0	0	ı	9	нт	EM)	9	I	Y	i	У
	1	0	1	0	10	LF	SUB	*	:	J	Z	j	z
	1	0	1	1	П	VT	ESC	+	;	К	[k	-
	1	1	0	0	12	FF	FS	,	<	L	\	1	
	ı	1	0	1	13	CR	GS	_	=	М]	m	}
	ı	ı	1	0	14	SO	RS		>	N	^	n	~
	1	1	1	1	15	SI	US	/	?	0	_	0	DEL

Legibility

- Reading binary numbers gets difficult quickly:
 - 0 10000000
 - 0 101011011011
 - 0 11111111110101
- Need a compressed way to look at binary for legibility
 - Could convert to decimal, but not easy
 - Could we use yet a third number system?

Hexadecimal

- Hexadecimal base-16 number system
- Every 4 bits is one character from 0-9 and then a-f
- Start with 0x to show that number is hexadecimal
 - o 0x1000
 - o 0x40ef
- Used to express:
 - Colors
 - Memory addresses
 - IPv6 network addresses

Number systems table

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0x0	0	1000	0x8	8
0001	0x1	1	1001	0x9	9
0010	0x2	2	1010	0xb	10
0011	0x3	3	1011	0xa	11
0100	0x4	4	1100	0xc	12
0101	0x5	5	1101	0xd	13
0110	0x6	6	1110	0xe	14
0111	0x7	7	1111	0xf	15

Takeaways

- Number systems are arbitrary
- Decimal used out of necessity (maybe) thanks to fingers
- Binary used out of necessity thanks to transistors
- Hex used out of necessity to help with legibility
- Binary and hex are useful in many aspects of CS
 - Programming data types and sizes
 - Systems OS encodings and memory addresses
 - Networking IPv6 addresses, packet encoding
 - Graphics color codes