CS100M Spring 2007: Project 5 Grading Guide

The coded items below (e.g., c1e, s2a) indicate what a student’s solution should accomplish. Codes that begin with the letter “c” deal with correctness; codes that begin with “s” deal with style.

Grader: If a student’s solution does not accomplish task c1a, for example, then write the task code “c1a” along with any diagnostic remarks you can give. Count the number of correctness and style errors separately. Items marked with ** count as two errors. In the table below, the top row lists the possible scores (1 to 5). The next row lists the number of correctness errors corresponding to every score category. The style score is determined similarly. Enter the total score (maximum of 10) in CMS as the project score. If there are bonus questions, enter any bonus points separately in the “Bonus Bucket,” separate from the project score.

Student: Read the grading guide for every project, even if you get a perfect score! Notice from the table below that we often give one or two “freebies,” i.e., mistakes that don’t cost you any points. Learn from working on the project, and learn from any mistakes.

Scores

· c and s stand for correctness and style; see table below.

· parts with ** next to them means that they are double the value, *** for triple, etc.

· Apply bonus for exemplary work or doing additional tasks.

	Score
	0
	1
	2
	3
	4
	5

	# correctness errors
	>14
	11-14
	7-10
	4-6
	2-3
	0-1

	# style errors
	>9
	8-9
	6-7
	4-5
	2-3
	0-1

General

(s0a) Use meaningful variable names

(s0b) Appropriate indentation

(s0d) Appropriate and concise comments throughout

(s0e) Reasonable line lengths; no horizontal scrolling

(s0f) [up to **] No superfluous code

(s0h) No debugging output.

(s0i) Unnecessary comparisons: e.g. if (x == true) should simply be if (x). Deduct this point if you see more than 1 occurrence.

(c0a) [up to **] Program compiles without error. (1 * for each compiler error message up to 2)

(c0b) [up to **] Program successfully executes without crashing. (* for occasional, ** for persistent)

(c0c) [up to ***] Preserves given code. Make sure method headers, including arguments, stay the same.

(c0d) [up to **] Do not use arrays.

Velocity.java

(c1a) Constructor implemented correctly.

(c1b) Getters and setters implemented correctly.

Point.java

(c2a) Constructor implemented correctly.

(c2b) Getters and setters implemented correctly.

(c2c) distance method implemented correctly.
Walls.java

(c3a) Constructor implemented correctly.

(c3b) Getters and setters implemented correctly. Make sure getters don’t return static values.

(c3c) checkBounce checks all four walls (regardless whether the code works).

(c3d) checkBounce makes balls bounce off all four walls by reversing the right velocity component.

(c3e) checkBounce makes balls bounce off at the circumference of the ball, instead of the center. You can just check this visually.

(c3f) checkBounce changes the position of the ball when it bounces, so that it is at least not in the wall any more. (Otherwise, balls can get “stuck” in a wall.)

Ball.java

(c4a) Constructor implemented correctly.

(c4b) Getters and setters implemented correctly.

(c4c) checkCollision compute the distance between the two centers correctly.

(c4d) checkCollison returns true iff the distance is less than the sum of the two radii. (Doesn’t matter if they use strictly less than or less than/equal.)

(c4e) update method checks isExploding in an if/else statement to determine what to do based on whether the ball is exploding.

(c4f) When not exploding, position is correctly updated by changing the x and y coordinates of the center. The new center should be computed using the old center coordinates and secsElapsed.

(c4g) If exploding, the ball expands for some amount of time by increasing radius. The amount of increase should depend on secsElapsed.

(c4h) Ball stops expanding at some point. This can be controlled by either the amount of time or the size of the ball.

(c4i) Ball shrinks to 0 radius eventually.

(s4a) ** checkCollision uses Point’s distance method to compute the distance between the two centers instead of calculating the distance using the values from getCenter().getX(), getCenter().getY(), etc, directly.

BoomShine.java

(c5a) ball1 and ball2 are created with random positions and velocities. Make sure the ranges are reasonable.

(c5b) For the velocities, make sure the code generates negative values as well as positive values, with equal probabilities.

(c5c) In each iteration, update is called correctly for each ball.

(c5d) walls.checkBounce is called correctly for each ball.

(c5e) frame.getClick is called correctly to get a click, and return value is checked for null.

(c5f) If click is not null, a third ball is created and set to explode.

(c5g) For each possible pair of balls, checkCollision is called to determine if they collided.

(c5h) If balls collide with an exploding ball, they explode as well.

(c5i) When all balls have exploded, a message is displayed.

(c5j) A second click by the user is not allowed.

