
CS100M: Section Exercises for Feb. 7, 8

1. This is a continuation of the exercise from last week’s lab. Write a script to evaluate the
following function based on a user-input value of x:

f(x) =





x2 if x < 0
x if 0 ≤ x < 1
2x if 1 ≤ x < 9√

x otherwise

Print the result. The script must use nested branching; so, in particular, one cannot use the
elseif keyword.

2. Write a Matlab script to print the first n Fibonacci numbers. Remember that the Fibonacci
numbers are defined as Fn = Fn−1 + Fn−2 with F1 = 1 and F2 = 1. Notice that to calculate any
Fn, you know need to know the two previous Fibonacci numbers—you do not need to keep track
of the entire sequence at any time. Use scalar variables only. A scalar is a variable that stores a
single value at one time. Your script will begin with the following statements:

n= input(’Input n: ’);
value1= 1;
value2= 1;

3. Write a Matlab script to print the numbers Fn, Fn +1, Fn+2, . . . , Fn+1−1, Fn+1. For example,
if n = 6, then your script prints 8, 9, 10, 11, 12, 13 since F6 = 8 and F7 = 13. Your script begins
with the following statements:

n= input(’Input n: ’);
value1= 1;
value2= 1;

4. Write a Matlab script to print all the numbers between 1 and n, exclusive, that divide n
(without a remainder using integer division). n is a user input value. (Hint: you already know how
to check whether or not a number divides another number. Think back to the first lab.)

Optional Challenge Question: Refer to Question 4 and write a Matlab script to print the
prime numbers that divide n.

1



Reminder: This is a reminder about certain nice properties of if-statements and how to cut down
on superfluous code. Suppose you have a nonnegative ray angle A in degrees. The following code
determines in which quadrant A lies:

A = input(’Input ray angle: ’);
A = mod(A, 360); %Given nonnegative A, result will be in the interval [0,360)

if (A < 90)
quadrant= 1;

elseif (A < 180)
quadrant= 2;

elseif (A < 270)
quadrant= 3;

else
quadrant= 4;

end

fprintf(’Ray angle %f lies in quadrant %d\n’, A, quadrant);

Notice that in the second condition, it is not necessary to check for A>=90 in addition to A<180
because the second condition, in the elseif branch, is executed only if the first condition evaluates
to false. That means that by the time the computer gets to the second condition, it already knows
that A is ≥ 90 so writing A>=90 && A<180 as the second condition would be redundant. Similarly,
the concise way to write the third condition is to write only A<270 as above—unnecessary to write
the compound condition A>=180 && A<270. This is the nice (efficient) feature of “cascading” and
“nesting.” If I do not cascade or nest, but instead use independent if-statements, then I must use
compound conditions in some cases, as shown in the fragment below:

A= mod(A, 360); %Given nonnegative A, result will be in the interval [0,360)
if (A < 90)
quadrant= 1;

end
if (A >=90 && A < 180)
quadrant= 2;

end
if (A >=180 && A < 270)
quadrant= 3;

end
if (A >=270)
quadrant= 4;

end

2


