
1

1

CS100J    03 April 2007
Sorting: insertion- selection- quick- sort

Rectangular arrays and ragged arrays.  Secs. 9.1 – 9.3

Haikus (5-7-5) seen on Japanese computer monitors

Do exercises on pp. 311-312 to get familiar with concepts
and develop skill. Practice in DrJava! Test your methods!

Yesterday it worked.
Today it is not working.
Windows is like that.

A crash reduces
Your expensive computer
To a simple stone.

Three things are certain:
Death, taxes and lost data.
Guess which has occurred?

Serious error.
All shortcuts have disappeared.
Screen. Mind. Both are blank.

The Web site you seek
Cannot be located, but
Countless more exist.

Chaos reigns within.
Reflect, repent, and reboot.
Order shall return. 2

Sorting:
                             ?
0                                                                                           n

pre:  b

                             sorted 
0                                                                                           n

post: b

                             sorted                   ? 
0                                          i                                                ninsertion sort

inv: b

for (int i= 0;  i < n;  i= i+1) {

}

“sorted” means in ascending order

2  4  4  6  6  7  5
i

2  4  4  5  6  6  7
i

Push b[i] down into its sorted
       position in b[0..i];

Iteration i makes up to i swaps. In worst case, number of
swaps needed is 1 + 2 + 3 + … (n-1) = (n-1)*n / 2.

Called an “n-squared”, or n2, algorithm.

3

                             ?
0                                                                                           n

pre: b

                             sorted 
0                                                                                           n

post: b

Add property to invariant: first segment contains smaller values.

            ≤ b[i..k],   sorted           ≥ b[h..i-1],      ? 
0                                          i                                                n

invariant:  b
selection sort

                             sorted                   ? 
0                                          i                                                n

invariant: b
insertion sort

for (int i= 0;  i < n;  i= i+1) {

}

2  4  4  6  6   8  9  9  7  8  9
i                       n

2  4  4  6  6   7  9  9  8  8  9
i                       n

7int j= index of min of b[i..n-1];

Swap b[j] and b[i];

Also an “n-squared”, or n2, algorithm. 4

Quicksort/** Sort b[h..k] */
public static void qsort(int[] b, int h, int k) {

}

if (b[h..k] has fewer than 2 elements)
      return;

j= partition(b, h, k);

    <= x             x            >= x 
                                       h                        j                       k

post:  b

x                        ?
                                       h                                                k

pre:   b

int j= partition(b, h, k);

// b[h..j–1] <= x < b[j+1..k]

// Sort b[h..j–1]  and  b[j+1..k]

qsort(b, h, j–1);

qsort(b, j+1, k);

To sort array of size n. e.g. 215

Worst case:  n2             e.g. 230

Average case:
             n log n.      e.g. 15 * 215

      215 = 32768

5

5   4   7   3b
0   1   2   3     b.length one-dimensional array

5   4   7   3

4   8   9   7

5   1   2   3

4   1   2   9

6   7   8   0

d

0   1   2   3  

0

1

2

3

4

rectangular array: 5 rows and 4 columns

number of rows

number of cols

Type of d is  int[][]  (“int array array”,

      “an array of int arrays”)

To declare variable d:

     int d[][].

To create a new array and assign it to d:

    d= new int[5][4];

To reference element at row r column c:

    d[r][c]
6

5   4   7   3

4   8   9   7

5   1   2   3

4   1   2   9

6   7   8   0

d

0   1   2   3  

0

1

2

3

4

Number of rows:                     d.length

Number of columns in row r:  d[r].length

Using an array initializer:

int[][] d= new int[][]{ {5,4,7,3}, {4,8,9,7}, {5,1,2,3}, {4,1,2,9}, {6,7,8,0} };

“Length of one array in
array of arrays”

number of rows

number of cols

Type of d is  int[][]  (“int array array”,

      “an array of int arrays”)

To declare variable d:

     int d[][].

To create a new array and assign it to d:

    d= new int[5][4];

To reference element at row r column c:

    d[r][c]



2

7

/** = sum of first elements of rows of d. e.g. for array to
         right, it’s 5 + 4 + 5 + 4 + 6. */
public static int sum0(int[][] d) {

}

5   4   7   3

4   8   9   7

5   1   2   3

4   1   2   9

6   7   8   0

d

0   1   2   3  

0

1

2

3

4

int x= 0;

return x;
// x = sum of first element of rows d[0..d.length–1]

// inv: x = sum of first element of rows d[0..r–1]
for (int r= 0;  r != d.length;  r= r+1) {

}
x= x + d[r][0];

8

// Process elements of b[][] in row-major order
// inv: rows 0..r-1 have been processed.
//        In row r, b[r, 0..c-1] have been processed
   for (int r= 0; r != b.length; r= r + 1)

   for (int c= 0; c != b[r].length; c= c+1) }
 Process b[r][c]
}

Pattern for processing all the elements of an array

Row-major order (first row 1, then row 2, etc.)

9

How multi-dimensional arrays are stored: ragged arrays

int b[][]= { {2, 3, 4}, {5, 1, 2} };

b a0 a0
r0
2

3

4

0

1

2

r1
5

1

2

0

1

2

r0

r1

0

1

b is a one-dimensional array of b.length elements

Its elements are one-dimensional arrays.

b[0] is a one-dimensional array of ints of length b[0].length.
Must all these arrays have the same length? No!

10

How multi-dimensional arrays are stored: ragged arrays

b a0 a0
r0
2

3

4

0

1

2

r1
5

6

0

1r0

r1

0

1

int[][] b;          Declare variable b of type int [][]

b= new int[2][]  Create a one-dim. array of length 2 and store its

name in b. Its elements are null, have type int[]

b[0]= new int[] {2, 3, 4};  Create int array, store its name in b[0].

b[1]= new int[] {5, 6};  Create int array, store its name in b[1].

11

Pascal’s Triangle

                                                 1

                                           1          1

                1          2          1

                                1          3          3         1

                           1         4         6           4       1

                       1       5         10       10         5       1

The first and last entries on each row are 1.

Each other entry is the sum of the two entries above it

row r has r+1 values.

0

1

2

3

4

5

…


