CS100J 03 April 2007
Sorting: insertion- selection- quick- sort
Rectangular arrays and ragged arrays. Secs. 9.1 -9.3
Do exercises on pp. 311-312 to get familiar with concepts
and develop skill. Practice in DrJava! Test your methods!

Haikus (5-7-5) seen on Japanese computer monitors

Yesterday it worked. Serious error.
Today it is not working. All shortcuts have disappeared.

“sorted” means in ascending order

Sorting: 0 n
pre: b ‘ ? ‘
0 n
post: b‘ sorted ‘
insertion sort 0 i n
inv: b ‘ sorted ‘ ? ‘
i
for (int i=0; i<n; i=i+l){ ‘244667‘5 ‘
Push b[i] down into its sorted «
position in b[0..i]; i
[24450606[7 |
}
Iteration i makes up to i swaps. In worst case, number of
swaps neededis 1 +2+3 + ... (n-1) =(n-1)*n/2.
Called an “n-squared”, or n, algorithm. 2

Windows is like that. Screen. Mind. Both are blank.
A crash reduces The Web site you seek
Your expensive computer Cannot be located, but
To a simple stone. Countless more exist.
Three things are certain: Chaos reigns within.
Death, taxes and lost data. Reflect, repent, and reboot.
Guess which has occurred? Order shall return. ,
0 n
pre: b ‘ ? ‘
0 n
post: b‘ sorted ‘
insertion sort 0 i n
invariant: b ‘ sorted ‘ ? ‘

Add property to invariant: first segment contains smaller values.

/%% Sort blh. k] */ Quicksort
public static void gsort(int[] b, int h, int k) {
if (b[h..k] has fewer than 2 elements)
return;

L » To sort array of size n. e.g. 2"
int j= partition(b, h, k);

Worst case: n? e.g. 2%
// blh..j~1] <= x <b[j+1.k]
Average case:
// Sort b[h..j-1] and b[j+1..k] nlogn. e.g. 15 15
gsort(b, h, j-1); 215 =32768
gsort(b, j+1, k); h k
pre: b ‘ X ‘ ? ‘
) j= partition(b, h, k);
h i
post: b‘ <=x ‘x ‘ >=X ‘

selection sort 0 i n
invariant: b ‘ < b[i..k], sorted ‘ =bh.i-1], ? ‘
for (int i= 0; i<n; i=i+l) { i n
PR . . 24466(899789
int j= index of min of b[i..n-1]; ‘ ‘ 7 ‘
Swap b[j] and bli]; i n
[24466]799889]
¥
Also an “n-squared”, or n2, algorithm. 3
0 1 2 3 blength one-dimensional array
0123 rectangular array: 5 rows and 4 columns
d 0|5473
114897 Type of d is int[][] (“int array array”,
20512 3 “an array of int arrays”)
341209 To declare variable d: number of rows
4/6 780 int d(](].

To create a new array and assign it to d:
d= new int[5][4];

To reference element at row r column c:

d[r][c] number of cols

Type of d is int[][] (“int array array”,
01 23 yp y y
“an array of int arrays”
d 0|5473 Y ¥
To declare variable d: 3
1148097 number of rows
int d[][].
215123 an
To create a new array and assign it to d:
314129
d= new int[5][4];
4|6 7 80
To reference element at row r column c:
d[r][c] number of cols
Number of rows: d.length “Length of one array in

Number of columns in row r: d[r].length | array of arrays™

Using an array initializer:

int[][] d= new int[][]{ {5.4,7,3}, {4.8,9,7}, {5.1,2,3}, {4.1.2,9}, {6,7.8.0} };

6

Pattern for processing all the elements of an array

Row-major order (first row 1, then row 2, etc.)

// Process elements of b[][] in row-major order

// inv: rows 0..r-1 have been processed.
Vi In row r, b[r, 0..c-1] have been processed

for (int r=0; r !=b.length; r=r + 1)
for (int c= 0; ¢ !=b[r].length; c=c+1) }

Process b[r][c]

/*#% = sum of first elements of rows of d. e.g. for array to 0123
right, it's 5+4 +5 +4+6. %/ d 05473
public static int sumO(int[][] d) { 114 8 97
int x=0; 215123
// inv: x = sum of first element of rows d[0..r—1] 304120
for (int r=0; r !=d.length; r=r+1) {
x=x +d[r][0]; 46780
¥
/I x = sum of first element of rows d[0..d.length—1]
return x;
¥
How multi-dimensional arrays are stored: ragged arrays
intb(][]={{2,3,4}, {5, 1.2} };
10 rl
Y- 4
b[a0 J-- SR e AP 0ls
0|10 13 11
Hel - 24 202
IR _.=v

b is a one-dimensional array of b.length elements

Its elements are one-dimensional arrays.

b[0] is a one-dimensional array of ints of length b[0].length.
Must all these arrays have the same length? No!

How multi-dimensional arrays are stored: ragged arrays

int[][] b; Declare variable b of type int [][]

b= new int[2][] Create a one-dim. array of length 2 and store its
name in b. Its elements are null, have type int[]

b[0]= new int[] {2, 3, 4}; Create int array, store its name in b[0].

b[1]=new int[] {5, 6}; Create int array, store its name in b[1].

Pascal’s Triangle

1 0
1 1 1

1 2 1 2

1 3 31 3

1 4 6 4 1 4

1 5 10 10 5 1 5

The first and last entries on each row are 1.
Each other entry is the sum of the two entries above it

row r has r+1 values.

