
1

1

CS100J 8 March 2007 Executing method calls. Testing
Drawing frames for method calls: read pp. 93-94

Testing: read chapter 14, pp. 385–401

2

Executing method calls, pp 93-94
Understanding this not only prepares you for prelim 2, it helps you
understand how recursion can work and how a method determines

what variables mean.

method name: program counter

parameter 1

parameter n local variable m

local variable 1
frame for a call

number of statement
to execute next

Execution of method call
1. Draw a frame for the call.
2. Assignment arg values to the pars
3. Execute method body
4. Erase frame, and, for a function,

return value of the return expression.

In step 3, look in frame for
variables/methods.

3

Executing method calls, pp 93-94. The scope box

method name: program counter scope box

parameter 1

parameter n local variable m

local variable 1

static method: name
of class.

non-static method:
name of object in
which the called

mehod resides.

Execution of method call
1. Draw a frame for the call.
2. Assignment arg values to the pars
3. Execute method body
4. Erase frame, and, for a function,

return value of the return expression.

In step 3, look in frame for
variables/methods. If not
there, look in place given
by scope box.

the scope box indicates where to look for a
name that is not in the frame. It contains:

4

Executing method calls, pp 93-94

public class C {
 int x;
 public int m(int p) {
 int y= p + x;

return y;
 }
}

v a1

v.m(6) evaluate this expression

a1
Cx 5

m(int p) { … }

m: 1 a1

p

y

frame for the call

non-static method:
name of object

When executing
method body, look
in frame for
variables/methods.
If not there, use
scope box to tell
where to look next.

5

Testing: Read chapter 14.

Bug: Error in a program.

Testing: Process of analyzing, running program, looking for bugs.

Test case: A set of input values, together with the expected output.

Debugging: Process of finding a bug and removing it.

Exceptions: When an error occurs, like divide by 0, or s,,charAt[I]
when I = – 1, Java throws an exception. A lot —generally too
much— information is provided.

6

Exceptions: When an error occurs, like divide by 0, or s.charAt[i]
when i = – 1, Java throws an exception.

06 /** = String s truncated …. */
07 public static String truncate5(String s) {
08 int b= 10 / 0;
09 if (s.length() <= 5)
10 return s;
11 return s.substring(0,5);
12 }

ArithmeticException: / by zero
 at A4Methods.truncate5(A4Methods.java:8)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(….java:39)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(….java:25)
 at java.lang.reflect.Method.invoke(Method.java:585)

important part

Turn on line
numbering in
DrJava. Preferences
/ Display Options

call stack

2

7

Debugging a program

Simplest way for you to debug at this point is to put print
statements, suitably annotated, at judiciously chosen places in the
program.

When an error occurs, you have to play detective and find it.
That process is called debugging. The place where the bug is
may be far removed from the place where an error is revealed.

8

Debugging a program

public static HSV RGB2HSV(Color rgb) {
 …
 /**Figure out MAX and MIN*
 double MAX= 0; double MIN= 0;
 if (R>G && R>B) {MAX= R; }
 if (G>B && G>R) {MAX= G;}
 if (B>R && B>G) {MAX= B;}
 if (R<G && R<B) {MIN= R; }
 if (G<B && G<R) {MIN= G; }
 if (B<R && B<G) {MIN= B;}

When an error occurs, play detective and find it. Called
debugging. The place where the bug is may be far removed
from the place where an error is revealed.

System.out.println("R " + R + ", G " + G +
 ", B ” + B + ", MAX " + MAX);

If you just output
the numbers
without naming
them, you will have
trouble.

9

public static HSV RGB2HSV(Color rgb) {
 …
 if (R>G && R>B) {MAX= R; }
 if (G>B && G>R) {MAX= G;}
 if (B>R && B>G) {MAX= B;}
 if (R<G && R<B) {MIN= R; }
 if (G<B && G<R) {MIN= G; }
 if (B<R && B<G) {MIN= B;}
 System.out.println("R " + R + ", G " + G +
 ", B ” + B + ", MAX " + MAX);

> A4Methods.RGB2HSV(new java.awt.Color(255,255,128))
R 1.0, G 1.0, B 0.5019607843137255, MAX 0.0

Look! MAX is 0 and not 1! if
conditions should be >= , not >

call and output

10

public static HSV RGB2HSV(Color rgb) {
 …
 double MAX= Math.max(R, Math.max(G, B));
 double MIN= Math.min(R, Math.min(G, B));

The above is a better way to calculate the MAX and the
MIN. It is better to rely on what has been programmed
before than to duplicate the work. It saves time and leads
to fewer errors.

