
CS100J Lab 04. Writing functions Spring 2007

Name _____________________ NetId __________

Section time _______________ Section instructor ___________________

The purpose of this lab is to give you practice with developing the bodies of methods. At the same time, this lab will give
you practice with Strings. This lab will help you prepare for the prelim. We begin with some information on Strings. We
also introduce you to the equality comparison operator == and its counterpart, function equals. After this lab, please study
Section 5.2 of the text, beginning on page 175.

A object (instance, or folder) associates a number with each character in its list. The number is called the
or position of the character. Type the following line into the interactions pane of Dr. Java:
String index

String s= "Java
is fun.";

String object now contains the list of characters "Java is fun." The index of each character is shown below:s

The index of the first character is 0 (not 1), and the space character between each of the words and the period each have an
index.

index 0 1 2 3 4 5 6 7 8 9 10 11
s J a v a i s f u n .

In the string " what is the index of the character ? How about the last space
character? Write down your answers:

I will study every day.", 'w'

A list of some functions that appear in each String folder (there are more, which you can find in the specification of class
String in the API package) is given at the end of this handout. Refer to it when doing this lab. Note also that if a String
contains only digits (not even blanks), then the function call

s

Integer.parseInt(s)

yields the integer represented by . For example, Integer.parseInt("345") is 345s

Important point about Equality

Symbol == is used for equality testing. You know that it . However, when and are of the same class-
type, the test is made on the names of the folders. Therefore:

2+3 == 5 true x y
x == y

 is ALWAYS because two folders, with different names, are
created.
new C(args) == C(args)new false

Evaluate the following expressions in the interactions pane and write down their values. In the third one, for each
occurrence of "ab", evaluation in the interactions pane creates a new manilla folder of class String.

 value:
 value:

 ! value:

new String("ab") == new String("ab")
new Integer(5) == new Integer(5)
"ab" == "ab"

Method Object, the superest class of them all has a boolean function , which in class is
defined to work exactly like . Therefore, each class can override function , and the convention is to define

equals(Object) Object
== equals

2007 02 8 7:43 PMCS100J, Spring 2007 Lab 04 Writing functions

Page 1 of 4file://localhost/Volumes/Work17A/CS100Spring2007/handouts/labs/lab04methods.html

equals to test for the equality of all the fields in two objects. For example, classes and override this
method. To see this, try the following in the interactions pane and write down their values:

String Integer

 value:
 value:

 value:

(new String("ab")).equals("ab")
(new Integer(5)).equals(new Integer(5))
"ab".equals("ab")

You need to understand this distinction between and function for the first prelim. Read about equality of
Strings on page 179 and equality testing on page 118.

== equals

WRITING METHODS THAT DEAL WITH STRINGS

Below, we specify a bunch of methods for you to write. Do as many of them as you can in this lab. You probably won't
finish them. We expect you to finish THREE of them during the lab —show them to your lab instructor at the end of the
lab. How much of the others you do is up to you. The more you practice, the easier developing such programs will
become.

The methods will, among other things, change a time in a into a different format. The time comes in four
formats:

String

24-hour-string:
"<hours>:<minutes>"
<hours> is in range 0:23 and <minutes> is in range 0..59
Examples: "4:20" "13:00" "23:59"

AM-PM-string:
"<hours>:<minutes>AM" or "<hours>:<minutes>PM"
<hours> is in range 0:11 and <minutes> is in range 0..59
Examples: "4:20AM" "3:00PM" "11:59PM" "0:0"

24-hour-verbose
Example: "4 hours and 20 minutes"
Example: "23 hours and 5 minutes"
Note: exactly one blank between each of the pieces.

24-hour-correct
Exactly like the 24-hour-verbose format except that it is gramatically correct. So,
instead of "1 hours and 20 minutes" it reads "1 hour and 20 minutes" and
instead of "0 hours and 1 minutes" it reads "0 hours and 1 minute".

What to do

When you are finished writing and testing (THREE of) the functions given below, show them to your lab instructor. We
suggest that you save both .java files that you created on a USB storage key or else email them to yourself. If you do not
have time to finish the three in the allotted time, then show the completed lab to your instructor the next week.

, create in DrJava a new class and save it appropriately —
. To simplify your work, you can download file from here or from the course website; it has all

the methods in it already. The function bodies have a return statement just so that the class will compile.

First Methods remember, put all files for a new program in
a new folder Methods.java

, create a JUnit test class, as usual.Second

, for each function given below, in turn, do the following:Third

1. Write the body of the method. BEFORE YOU WRITE THE BODY, IF THE METHOD DOES NOT HAVE A
SUITABLE SPECIFICATION IN A JAVADOC COMMENT, WRITE ONE.

2007 02 8 7:43 PMCS100J, Spring 2007 Lab 04 Writing functions

Page 2 of 4file://localhost/Volumes/Work17A/CS100Spring2007/handouts/labs/lab04methods.html

2. Think about what test cases would be necessary for you to know that the method is correct. Create a testX method in
class MethodTester, and insert those test cases.

3. Test the method.

Advice: If you need help, ask the TA or a consultant. Don't waste time! Some pondering is necessary, but don't overdo it.

Guidelines: You should check the javadoc comments (click button javadoc) to make sure they are right. Always keep your
program indented properly, and don't let lines get too long. If horizontal scrolling is necessary, then fix it so that it is not
necessary. Everything should be readable.

/** s is a time in the 24-hour-string format; Return the same time in 24-hour-verbose format */
 String toVerbose(String s) {

 "";
}

/** s is a time in the 24-hour-string format; Return the same time in AM-PM format. */
 String ToAMPM(String s) {

 "";
}

/** s is a time in 24-hour-string format; Return the same time in 24-hour-correct time */
 String timeToCorrect(String s) {

 "";
}

/** s is a time in AM-PM-string format; Return the same time in 24-hour-string format.*/
 String eliminateAMPM(String s) {

 "";
}

/** s is a time in EITHER the 24-hour-string format OR the AM-PM-string format;
Return the same time in the 24-hour-string format*/

 String removeAMPM(String s) {
 "";

}

/** s is a time in the 24-hour-string format;
Return the time as the number of minutes. E.g. "14:35" is 14*60 + 35.*/

 timeInMinutes(String s) {
 0;

}

/** s is a time in the AM-PM-string format;
Return the time as the number of minutes. E.g. "14:35" is 14*60 + 35.
See if you can write the body as a single return statement. */

 AMPMtimeInMinutes(String s) {
 0;

}

/** = time s1 < time s2;
Precondition: s1 and s2 are in either 24-hour-string format or AM-PM-string format
See if you can write the body as a single return statement. */

 isLess(String s1, String s2)

public static
return

public static
 return

public static
 return

public static
 return

public static
 return

public static int
 return

public static int
 return

public static boolean

2007 02 8 7:43 PMCS100J, Spring 2007 Lab 04 Writing functions

Page 3 of 4file://localhost/Volumes/Work17A/CS100Spring2007/handouts/labs/lab04methods.html

 false;
}
 return

s.length() = the length of s —the number of characters in it. Can be 0.
is "abc".length() 3

s.charAt(i)
= the character at index i of String s, which we might write as s[i] The result is of
type .
 is

.
char

"abc".charAt(1) 'b'

s.substring(b,e) = the String s[b..e–1] --consists of chars s[b], s[b+1], ..., b[e–1] .
 is "abc".substring(1,3) "bc"

s.substring(b) = the String s[b..], or s[b..s.length()–1] .
 is"abc".substring(1) "bc"

s.indexOf(s1)
= the index of the first char of the FIRST occurrence of String s1 in s (–1 if s1 does not
occur in s) .
 is"abbc".indexOf("b") 1

s.indexOf(c) = the index of the FIRST occurrence of character c in s (–1 if s1 does not occur in s).
 is"abbc".indexOf('b') 1

s.lastIndexOf(s1)
= the index of the first char of the LAST occurrence of String s1 in s (–1 if s1 does not
occur in s) .
 is"abbc".lastIndexOf("b") 2

s.trim() = s with preceding and ending whitespace removed.
 is" abbc ".trim() "abbc"

s.startsWith(s1) = "s begins with String s1", i.e. = true if s begins with s1 and false otherwise
 is"abbc".startsWith("b") false

s.endsWith(s1) = "s ends with String s1"
 is"abbc".endsWith("c") true

s.equals(s1)
= true if s and s1 contains the same sequences of characters, i.e. the same strings.
 is"abbc".equals("abbc")
 is

true
"abbc".equals("abbcd") false

s.compareTo(s1)

= <0, 0 , or >0 depending on whether s is less than, equal to, or greater than s1.
 The comparison is based on alphabetic ordering, as in the dictionary.
 is
 is
"abbc".compareTo("a") 3
"abbc".compareTo("abbcdb") –2

2007 02 8 7:43 PMCS100J, Spring 2007 Lab 04 Writing functions

Page 4 of 4file://localhost/Volumes/Work17A/CS100Spring2007/handouts/labs/lab04methods.html

