
1

1

CS100J    06 November 2007
More on arrays

Sorting: insertion- selection- quick- sort

Haikus (5-7-5) seen on Japanese computer monitors

Do exercises on pp. 311-312 to get familiar with concepts
and develop skill. Practice in DrJava! Test your methods!

Yesterday it worked.
Today it is not working.
Windows is like that.

A crash reduces
Your expensive computer
To a simple stone.

Three things are certain:
Death, taxes and lost data.
Guess which has occurred?

Serious error.
All shortcuts have disappeared.
Screen. Mind. Both are blank.

The Web site you seek
Cannot be located, but
Countless more exist.

Chaos reigns within.
Reflect, repent, and reboot.
Order shall return. 2

Getting an invariant as picture:
Combine pre- and post-condition

Finding the minimum of an array

                    ?                                             and  n >= 0 
0                                                        n

pre: b

             x is the min of this  
0                                                        n

post: b

3

Getting an invariant as picture:
Combine pre- and post-condition

Dutch national flag. Array

                    ? 
0                                                        n

pre: b

 reds            whites                     blues  
0                                                        n

post: b

4

Binary search: Vague spec: Look for v in sorted array segment b[h..k].
    Better spec:

Precondition: b[h..k] is sorted (in ascending order).
Store in i to truthify:

postcondition: b[h..i] <= v  and  v < b[i+1..k]

Below, the array is in non-descending order

                    ? 
h                                                        k

pre: b

        <= v                          > v 
h                         i                              k

post: b

5

Partition algorithm:

b

b  x                            ?
h                                                                                       k

pre:

        <= x                        x                >= x 
h                                       j                                               k

post:

 3  5  4  1  6  2  3  8  1 b
h                              k

change:

into

or

 1  2  1  3  5  4  6  3  8b
h           j                   k

 1  2  3  1  3  4  5  6  8b
h           j                   k

x is called the pivot value

(x is not a program variable; it just denotes the value initially in b[h].)  
6

Reversing array segment b[h..k]

                                reversed
h                                       j                                               k

post: b

b
                              not reversed
h                                                                                       k

pre:

 1 2 3 4 5 6 7 8 9 9 9 9 b
h                              k

change:

into  9 9 9 9 8 7 6 5 4 3 2 1b
h           j                   k



2

7

Remove adjacent duplicates

 1  2  2  4  2  2  7  8  9  9  9  9 b
0                                               nchange:

into  1  2  4  2  7  8  9  8  9  9  9  9b
0                         h                   n

postcondition:

b[0..h] = initial values in b[0..n] but with adj dups removed

don’t care what is
in b[k+1..n]

8

Sorting:
                             ?
0                                                                                           n

pre:  b

                             sorted 
0                                                                                           n

post: b

                             sorted                   ? 
0                                          i                                                ninsertion sort

inv: b

for (int i= 0;  i < n;  i= i+1) {

}

“sorted” means in ascending order

2  4  4  6  6  7  5
i

2  4  4  5  6  6  7
i

Push b[i] down into its sorted
       position in b[0..i];

Iteration i makes up to i swaps. In worst case, number of
swaps needed is 1 + 2 + 3 + … (n-1) = (n-1)*n / 2.

Called an “n-squared”, or n2, algorithm.

9

                             ?
0                                                                                           n

pre: b

                             sorted 
0                                                                                           n

post: b

Add property to invariant: first segment contains smaller values.

            ≤ b[i..],   sorted           ≥ b[0..i-1],      ? 
0                                          i                                                n

invariant:  b
selection sort

                             sorted                   ? 
0                                          i                                                n

invariant: b
insertion sort

for (int i= 0;  i < n;  i= i+1) {

}

2  4  4  6  6   8  9  9  7  8  9
i                       n

2  4  4  6  6   7  9  9  8  8  9
i                       n

7int j= index of min of b[i..n-1];

Swap b[j] and b[i];

Also an “n-squared”, or n2, algorithm. 10

Quicksort/** Sort b[h..k] */
public static void qsort(int[] b, int h, int k) {

}

if (b[h..k] has fewer than 2 elements)
      return;

j= partition(b, h, k);

    <= x             x            >= x 
                                       h                        j                       k

post:  b

x                        ?
                                       h                                                k

pre:   b

int j= partition(b, h, k);

// b[h..j–1] <= x < b[j+1..k]

// Sort b[h..j–1]  and  b[j+1..k]

qsort(b, h, j–1);

qsort(b, j+1, k);

To sort array of size n. e.g. 215

Worst case:  n2             e.g. 230

Average case:
             n log n.      e.g. 15 * 215

      215 = 32768

11

Sir Tony Hoare,      Fritz Bauer

Quicksort author     My advisor

Pioneer in computing in the 50's,
60's. Developer of the historical
computing section of the
Deutsches Museum

Marienplatz, Munich

12

Keypunch machine. In the 1960s
and early 1970s, a program was
punched on such cards. A card deck
containing a program to be run
would be taken out to the computer,
near the Ithaca airport, and run. Get
output back 3-4 hours after handing
in the card deck. Konrad Zuse's Z4

Zuse built the first working
computer in the late '30s, the
Z3, completed in 1941. The
original machine no longer

exists.


