Arrays: searching & sorting.

CS100J 01 November 2007

Reading: 8.5

Searching and sorting algorithms are on the course website.

Why did I get a Christmas Card on Halloween?

Decimal Octal Binary

00
01
02
03
04
05
06
07
08
09
10

00
01
02
03
04
05
06
07
10
11

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010

Decimal Octal Binary

11

13
14
15
16

o —
S 2

DR —=

=

(ISR SRR)

G

01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101

Decimal Octal Binary

22
23
24
25
26
27
28
29
30
31
32

26

010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100000

Decimal 5482: 5%103 + 4*102 + 8*10' + 2%10° = 5482 in decimal

Octal ~ 3726: 3%83 + 7*82 4 2%8! + 6*10° = 2006 in decimal

Binary 1011: 1%23 4 0%22 4 %21 4 1%20 =11 in decimal

/** = a string that contains the binary representation of n.
Precondition: n >=0 */
public static String binary(int n) {
if(n<=1)
return

wn

+n;

return binary(n/2) + (n%2);

Developing algorithms on arrays

The rest of this lecture develops several important algorithms on arrays.

With each, we specify the algorithm by giving its precondition and

Generally, the invariant comes from drawing another picture that
"generalizes" the precondition and postcondition, since the invariant is
true at the beginning and at the end.

postcondition as pictures.

Four loopy questions —memorize them:

1.

w o

ke

How does loop start (how to make the invariant true)?

When does it stop (when is the postcondition true)?

How does repetend make progress toward termination?

How does repetend keep the invariant true?

Getting an invariant as picture:

« Linear search.Vague spec.: find first occurrence of v in b[h..k-1].
Better spec.: Store an integer in i to truthify:
postcondition: (0) v is not in b[h..i-1]

(1) Either i=k or v=Db[k]

0 n
pre: b ‘ ? ‘
0 i n
post: b‘ x not here ‘ X ‘ ? ‘ OR
0 n i
b ‘ x not here ‘

Getting an invariant as picture:
Combine pre- and post-condition

Finding the minimum of an array

pre: b ‘

post: b ‘

0

n

0

x is the min of this

‘ and n>=0

Getting an invariant as picture:
Combine pre- and post-condition

Dutch national flag. Array

0 n
pre: b ‘ ? ‘

0 n
post:b‘ reds ‘ whites blues ‘

Binary search: Vague spec: Look for v in sorted array segment b[h..k].

Better spec:

Precondition: b[h..k] is sorted (in ascending order).
Store in i to truthify:

postcondition: b[h..i] <=v and v <b[i+1.k]

Below, the array is in non-descending order

pre: b ‘

h i k

post: b‘ <=v >V ‘

Partition algorithm: x is called the pivot value

pre: b‘ X ‘ ?

h i k
post: b‘ <=x ‘ X ‘ >=X ‘

h k

change: b|354162381
into h i k
b| 121354638

h i k
or b 123134568

(x is not a program variable; it just denotes the value initially in b[h].)

Reversing array segment b[h..k]

pre: ‘ not reversed

h i

post: b‘ reversed

h k

change: b| 123456789999
into h i k
b[999987654321

Remove adjacent duplicates

change: 0 n
b[1224227899099 |
0 h n 5 .
into b[1242789899909] fiontcarewhatls
in b[k+1..n]
postcondition:

b[0..h] = initial values in b[0..n] but with adj dups removed

