CS100J 25 October 2006
Arrays. Reading: Secs 8.1, 8.2, 8.3.
Listen to the following lectures on loops on your Plive CD. They are only
2-3 minutes long, and each has an insightful message.
1. The three lectures on Lesson page 7-6 —read the whole page.
2. The four lectures in Lesson page 7-5.

Start reading Secs. 8,1, 8.2, and 8.3 on arrays.

Computational simplicity

If you are writing too much code —it gets longer and longer, with no end in
sight: stop and look for a better way.

If your code is getting convoluted and you have trouble understanding it:
stop and look for a better way.

Learn to keep things simple, to solve problems in simple ways. This
sometimes requires a different way of thinking.

‘We are trying to teach not just Java but how to think about problem solving.
A key point is to break a problem up into several pieces and do each piece
in isolation, without thinking about the rest of them. Our methodology for
developing a loop does just that.

Arrays a0

An array: an object that can hold a fixed number of values 0 5

of the same type. Array to the right contains 4 int values.

The type of the array to the right is 1 7

int[] 2 4
Here is a variable that contains the name of 3 -2
the array. x @im[]

A declaration has the basic form

<type> <variable-name> ;

A declaration of x looks as to the right. The int[] x ;
declaration does not create the array, it only ’
declares x. x’s initial value is null.

Elements of the array are numbered 0, 1,2, ..., x.length—1;

length is a variable, not a function, so don’t put () after it.

Make everything as simple as possible, but no simpler. Einstein

©

Notes on array length
The array length is an instance field of the array.
This is why we write x.length, not x.length() 0 5
1 7
The lc“lflh }tzcld izﬁnal, r_ncalclling that it 2 4
cannot be changed or assigned.
The length remains the same once the array @“t[] 3 2

has been created.

‘We will omit it in the rest of the pictures.

The length is not part of the array type.
The type is int[]

An array variable can be assigned arrays of different lengths.

int[] x ; X @l int] Arrays

a0

Difference between Vector and array --both used to contain a bunch of things

Declaration: int[] a; Vector v;
Elements of a: int values Elements of v: any Objects
Creation: a=new int[n]; v=new Vector();

Array always has n elements Number of elements can change

Reference: ale] v.get(e)

Change element: a[e]=el;

Array locations a[0], a[1], a[2] are in
successive locations in memory.
Access is guaranteed take same time
no matter which one you reference.

Elements are all the same type (a
primitive type or some class type)

v.set(e, el);

You can’t tell how Vectors are stored in
memory. Referencing and changing
elements done through method calls

Elements can be of any Object type (but
not a primitive type), and casting may
be necessary when an element is
retrieved.

x=new int[4]; Create an array object of length 0 0
4 and store its name in X 1 0
2 0
X
EC 3o
x[2]=5; Assign 5 to array element 2 and a0
X[0]= -4; -4 to array element O 0 -
1 0
x[2] is a reference to element 2 5
number 2 of array x 3 0
int k=3; a0
x[k]= 2% x[0]; Assign 2*x[0], i.e. -8, to x[3] 0 -4
xlk-1]= 6; Assign 6 to x[2] 1 0
2 6
3l 8 |*
Array initializers
a0
Instead of 5
int[] c= new int[5];
c[0]=5; c[1]=4; c[2]=T; c[3]= 6; c[4]=5; 4
7
Use an array initializer: 6
int[] c=new int[] {5,4,7,6,5}; 5
No expression array initializer: gives the values to be in the
between the array initially. The values must all have the
brackets [. same type, in this case, int. The length of the
array is the number of values in the list
(can omit this)

Computer science has its field called computational complexity;
mine is called computational simplicity. Gries

A use of an array initializer

public class D {
public static final String[] months= new String[]{"January", "February",
"March", "April", "May", "June", "July", "August",
"September", "October", "November", "December"};

/** = the month, given its number m Note that months[m—1] is
Precondition: 1 <=m <= 12 */
public static String theMonth(int m) {

return months[m-1]; months[0] = “January”,
s months[1] = “February”,

returned, since

}

Variable months is:
static so that the object assigned to it will be created only once.
public so that it can be seen outside class D.

final so that it cannot be changed. 7

Procedure swap
public class D {
/** =Swap x and y */
public static void swap (int x, int y) {

int temp= x;
X=Y;
y=temp; The call will NOT swap a and b. Parameters x and y are
} initialized to the values of a and b, and thereafter, there is
} no way to change a and b.
swap(a, b); b

swap: 1

frame for call just
after frame is created.

Procedure swap

public class D { This method does swap
/** = Swap b[h] and b[k] */ b[h] and b[k], because
public static void swap (int[] b, int h, int k) { parameter b contains the
int temp= b[h];
blhl= blk];
b[k]=temp;
i
}

name of the array.

”;wap(c, 3,4); c
swap: 1 ?

frame for
call just
after frame
is created.

b [a0]

Linear search

public class D {
/** = index of first occurrence of ¢ in b[h..k-1] —
=k if ¢ is not in b[h..k-17*/
public static int findFirst (int c, int[] b, int h, int k) {
/1 if ¢ is in b[h..k-1], return its index in b[h..k-1]

// { invariant: c is not in b[h..t-1] }
for (int t=h; t<k; t=t+1){

t; Remember

h..h-1is the

return t;
empty range

// { cisnotin b[h..k-1] }
return k;

10

Two-dimensional arrays

0 12 3 blength one-dimensional array

rectangular array: 5 rows and 4 columns

Type of d is int[][] (“int array array”,

“an array of int arrays”)

To declare variable d: number of Tows
int d[][].

To create a new arpay and assign it to d:
d= new int[3][4];

To reference element atxow r column c:

d[r][c] number of cols

