
1

CS100J 23 October 2007
Exceptions in Java. Read chapter 10.

HUMOR FOR LEXOPHILES (LOVERS OF WORDS):

Police were called to a day care; a three-year-old was resisting a rest.
Did you hear about the guy whose whole left side was cut off?
He's all right now.
The butcher backed into the meat grinder and got a little behind in his
work.
When fish are in schools they sometimes take debate.
A thief fell and broke his leg in wet cement. He became a hardened
criminal.
Thieves who steal corn from a garden could be charged with stalking.
When the smog lifts in Los Angeles, U.C.L.A.

What happens when an error of some sort occurs?

// String s is supposed to contain an integer.
// Store that integer in variable b.
b= Integer.parseInt(s);

/** Parse s as a signed decimal integer and return
 the integer. If s does not contain a signed decimal
 integer, throw a NumberFormatException. */
public static int parseInt(String s)

Exceptions and Errors

In Java, there is a class Throwable:

Throwable
a0

“/ by zero”detailMessage

getMessage()

When some kind of error
occurs, an exception is
“thrown” —you’ll see
what this means later.

An exception is an instance
of class Throwable

(or one of its subclasses)

Exceptions and Errors

So many different kind of exceptions that we have to organize them.

Throwable
a0

“/ by zero”detailMessage

getMessage()

Exception

RuntimeException

ArithmeticException

Throwable

Exception Error

RuntimeException

ArithmeticException

Do
nothing

with these

 You can
"handle"

these

/** Illustrate exception handling */
public class Ex {
 public static void first() {
 second();
 }
 public static void second() {
 third();
 }
 public static void third() {
 int x= 5 / 0;
 }
}

Ex.first();
ArithmeticException: / by zero
 at Ex.third(Ex.java:13)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native
Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(…)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)
 at java.lang.reflect.Method.invoke(Method.java:585)

Class:

Call

 Output

AE
a0

AE
a0

AE
a0

/** Illustrate exception handling */
public class Ex {
 public static void first() {
 second();
 }
 public static void second() {
 third();
 }
 public static void third() {
 throw new
 ArithmeticException
 ("I threw it");
 }
}

Ex.first();
ArithmeticException: I threw it
 at Ex.third(Ex.java:14)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(…)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)
 at java.lang.reflect.Method.invoke(Method.java:585)

Class:

Call

 Output

AE
a0

AE
a0

AE
a0

2

/** Illustrate exception handling */
public class Ex {
 public static void first() {
 second();
 }
 public static void second() {
 third();
 }
 public static void third() {
 throw new
 MyException("mine");
 }
}

Ex.first();
ArithmeticException: mine
 at Ex.third(Ex.java:14)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(…)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)
 at java.lang.reflect.Method.invoke(Method.java:585)

 Class:

Call

 Output

Won’t compile.
Needs a “throws
clause, see next
slide

The “throws” clause
/** Class to illustrate exception handling */
public class Ex {
 public static void first() throws MyException {
 second();
 }
 public static void second() throws MyException {
 third();
 }
 public static void third() throws MyException {
 throw new MyException("mine");
 }

Catching a
thrown exception

public class Ex1 {
 public static void first() throws MyException{
 try {
 second();
 }
 catch (MyException ae) {
 System.out.println
 ("Caught MyException: " + ae);
 }
 System.out.println
 ("procedure first is done");
 }
 public static void second() throws MyException {
 third();
 }
 public static void third() throws MyException {
 throw new MyException(”yours");
 }
}

Execute the try-
block. If it finishes

without throwing
anything, fine.

If it throws a
MyException

object, catch it
(execute the catch
block); else throw

it out further.

