CS100J 18 October, 2006
The while loop and assertions

Read chapter 7 on loops.
The lectures on the ProgramLive CD can be a big help.

Quotes for the Day:

Instead of trying out computer programs on test cases until they are debugged,
one should prove that they have the desired properties.

John McCarthy, 1961, A basis for a mathematical theory of computation.

Testing may show the presence of errors, but never their absence.
Dijkstra, Second NATO Conf. on Software Engineering, 1969.

A week of hard work on a program can save you 1/2 hour of thinking.
Paul Gries, CS, University of Toronto, 2005.

The while loop: syntax

while (<condition>) <condition>: a boolean expression.

<repetend>
<repetend>: a statement.

while (<condition>{ BUT: We almost always make the

sequence of declarations <repetend> a block.

and statements

@ false °

©

The while loop

System.out.println(5*5); To execute the while loop:
System.out.println(6%6); (1) Evaluate condition k <= 8;
System.out.println(7*7); if false, stop execution.
System.out.println(8+8); (2) Execute the repetend.

(3) Repeat again from step (1).
int k=5;
while (k <=8) {
System.out.println(k*k);
k=k+1;

Trace execution of the
loop: Study section 7.1.2
shows you how to “trace”
execution of a loop.

System.out.println(k*k);
k=k+1;

For loop, corresponding while loop

<initialization>;
<initialization>; int k=b;
for (int k=b; k <= c; k=k+1) { while (k <= c) {
Process k Process k;
} k=k+1;
}

The while loop: 4 loopy questions

// Set ¢ to the number of ‘e’s in String s.

int n= s.length(); L. H_oy\/_ d(_)es it start? (what is
the initialization?)

c=0;

// invariant: ¢ = number of ‘e’s in s[0..k-1]

for (int k=0; k <n; k=k+1) { 2. When does it stop? (From

if (s.charAt(k) == ‘e’) the invariant and the falsity of
cmc+l: loop condition, deduce that

: result holds.)

3. How does it make progress

) toward termination?

4. How does repetend keep

// ¢ = number of ‘e’s in s[0..n-1] invariant true?

The while loop: 4 loopy questions. Allows us to focus on one
thing at a time. Separate our concerns.

// Set ¢ to the number of ‘e’s in String s.

int n= s length(); 1. How does it start? (what is
c=0; k=0; the initialization?)

// invariant: ¢ = number of ‘e’s in s[0..k-1]
while (k < n) { 2. When does it stop? (From
the invariant and the falsity of

if (s.charAt(k) =="¢) loop condition, deduce that

c=c+1; result holds.)
k= k+ I3 .
3. How does it make progress
} toward termination?
// ¢ = number of ‘e’s in s[0..n-1] 4. How does repetend keep

invariant true?

Understanding assertions
012345678

vVIXYZX ACZZ Z This is a list of Characters

This is an assertion about v
and k. It is true because
chars of v[0..3] are greater
than ‘C’ and chars of v[6..8]

are ‘Z’s.

Indicate
whether
0 k 8 each of
v[=c anzs | k[6 | these 3
assertions

0 k 8 i
is true or

. 7

Suppose we have this while
loop, with initialization:
initialization;
while (B) {

repetend

i

We add the postcondition and
also show where the invariant
must be true:
initialization;
// invariant: P
while (B) {
// { P and B}
repetend
/I{P}
}
I1{P}
/I { ResultR }

The four loopy questions

Second box helps us develop four loopy
questions for developing or understanding
aloop:

1. How does loop start? Initialization
must truthify inv P.
2. When does loop stop?

Atend, P and !B are true, and these must
imply R. Find !B that satisfies P && !B
=>R.

3. Make progress toward termination?
Put something in repetend to ensure this.

4. How to keep invariant true? Put
something in repetend to ensure this.

Develop loop to store in x the sum of 1..100.

We’ll keep this definition of x and k true:
x = sum of 1..k-1

1. How should the loop start? Make range 1..k—1

Four
empty: k=1; x=0;

loopy
2. When can loop stop? What condition lets us questions

know that x has result? When k == 101
3. How can repetend make progress toward termination? k= k+1;
4. How do we keep def of x, h, k true? x=x+k;

k=1; x=0;
// invariant: x = sum of 1..(k—1)
while (k !=101) {

x= x+k;
k=k+1;
}
/I { x=sum of 1..100 } 9

Roach infestation!

/** = number of weeks it takes roaches to fill the apartment --see p 244 of text*/

public static int roaches() {

double roachVol=.001; // Space one roach takes
double aptVol=20%20*8; // Apartment volume
double growthRate= 1.25; // Population growth rate per week

int w=0;

// number of weeks

int pop= 100; // roach population after w weeks

// inv: pop = roach population after w weeks AND
1 before week w, volume of the roaches < aptVol
while (aptVol > pop * roachVol) {

pop= (int) (pop * growthRate);

w=w+1;
}

return w;

10

Tterative version of logarithmic
algorithm to calculate b**c.

J#% = b¥¥c, given ¢ = 0 */

if (¢ 0) return 1;
if (c%2 = 0) return exp(b*b,

/** set z to b**c, given c = 0 */
return b * exp(b, c—1);

int x=Db; int y=c;int z= 1;
// invariant: z * x**y =b**c and0<y=<<c ¥
while (y !1=0) {
if (y %2==0)
{x=x*x1y=y/2; }
else {z=z*x;y=y-1:}

Rest on identities:
b**0 =1

N b¥*c = b * b*¥(c-1)
1 {z=b%*c} for even ¢, b¥¥c =
(b*b)**(c/2)

Algorithm is logarithmic in c,
since time is proportional to log ¢

public static int exp(int b, int c¢) {

c/2);

Calculate quotient and remainder when dividing x by y

x/y=q+rly

21/4=4 + 3/4

Property: x=q*y +r and 0<r<y

/** Set q to and r to remainder.
Note: x>=0andy >0 */

int q=0; int r=x;
//invariant: x=q*y+r
while (r>=y) {
r=r-y;
Q=q+1
¥

andO=<r

//{x=q*y+r and O=<r<y}

