
1

1

CS100J   18 October, 2006
The while loop and assertions

Read chapter 7 on loops.
The lectures on the ProgramLive CD can be a big help.

Quotes for the Day:
Instead of trying out computer programs on test cases until they are debugged,
one should prove that they have the desired properties.
John McCarthy, 1961, A basis for a mathematical theory of computation.

Testing may show the presence of errors, but never their absence.
Dijkstra, Second NATO Conf. on Software Engineering, 1969.

A week of hard work on a program can save you 1/2 hour of thinking.
Paul Gries, CS, University of Toronto, 2005.

2

The while loop: syntax
while ( <condition> )

<repetend>

while (<condition> {
   sequence of declarations
   and statements
}

<condition>: a boolean expression.

<repetend>: a statement.

BUT: We almost always make the
<repetend> a block.

condition

repetend

false

true

3

The while loop
System.out.println(5*5);
System.out.println(6*6);
System.out.println(7*7);
System.out.println(8*8);

int k= 5;
while ( k <= 8) {
     System.out.println(k*k);
     k= k+1;
}

To execute the while loop:
(1) Evaluate condition k <= 8;

if false, stop execution.
(2) Execute the repetend.
(3) Repeat again from step (1).

Trace execution of the
loop: Study section 7.1.2
shows you how to “trace”
execution of a loop.

k= 5;

k <= 8

System.out.println(k*k);
k= k+1;

false

true

4

For loop, corresponding while loop
<initialization>;
for (int k= b; k <= c; k= k+1) {
     Process k
}

<initialization>;
int k= b;
while (k <= c) {
     Process k;
     k= k+1;
}

5

// Set c to the number of ‘e’s in String s.

int n= s.length();

c= 0;  

//  invariant: c = number of ‘e’s in s[0..k-1]

for (int k= 0; k < n; k= k+1) {                    

    if (s.charAt(k) == ‘e’)

 c= c + 1; 

}

// c = number of ‘e’s in s[0..n-1]

The while loop: 4 loopy questions

1. How does it start? (what is
the initialization?)

2. When does it stop? (From
the invariant and the falsity of
loop condition, deduce that
result holds.)

3. How does it make progress
toward termination?

4. How does repetend keep
invariant true?

6

// Set c to the number of ‘e’s in String s.

int n= s.length();

c= 0;  k= 0;

//  invariant: c = number of ‘e’s in s[0..k-1]

while (k < n) {                    

    if (s.charAt(k) == ‘e’)

 c= c + 1; 

    k=  k+ 1;

}

// c = number of ‘e’s in s[0..n-1]

The while loop: 4 loopy questions. Allows us to focus on one
thing at a time. Separate our concerns.

1. How does it start? (what is
the initialization?)

2. When does it stop? (From
the invariant and the falsity of
loop condition, deduce that
result holds.)

3. How does it make progress
toward termination?

4. How does repetend keep
invariant true?



2

7

Understanding assertions

This is an assertion about v
and k. It is true because
chars of v[0..3] are greater
than ‘C’ and chars of v[6..8]
are ‘Z’s.

0   1   2   3   4   5   6   7   8
X  Y  Z  X   A  C  Z  Z   Zv This is a list of Characters

v        ≥ C       ?            all Z’s          k 6
0        3           k                  8

v        ≥ C       ?            all Z’s          k 5
0        3           k                  8

v        ≥ C                    all Z’s          k 6
0                    k                  8

v        ≥ W       A C     all Z’s          k 4
0                k                      8

Indicate
whether
each of
these 3

assertions
is true or

false. 8

We add the postcondition and
also show where the invariant
must be true:
initialization;
// invariant: P
while ( B ) {
    // { P and B}
    repetend
   // { P }
}
// { P }
// { Result R }

The four loopy questionsSuppose we have this while
loop, with initialization:
initialization;
while ( B ) {
    repetend
}

Second box helps us develop four loopy
questions for developing or understanding
a loop:

1. How does loop start? Initialization
must truthify inv P.

2. When does loop stop?

At end, P and !B are true, and these must
imply R. Find  !B  that satisfies   P && !B
=> R.

3. Make progress toward termination?
Put something in repetend to ensure this.

4. How to keep invariant true? Put
something in repetend to ensure this.

9

Develop loop to store in x the sum of 1..100.

1. How should the loop start?  Make range 1..k–1
empty:  k= 1;  x= 0;

We’ll keep this definition of x and k true:
                        x = sum of 1..k–1

2. When can loop stop?   What condition lets us
know that x has result?  When k == 101
3. How can repetend make progress toward termination? k= k+1;
4. How do we keep def of x, h, k true?  x= x + k;

Four
loopy

questions

k= 1;  x= 0;
// invariant: x = sum of 1..(k–1)
while ( k != 101) {
     x=  x + k;
     k= k + 1;
}
// { x = sum of 1..100 } 10

Roach infestation!

/** = number of weeks it takes roaches to fill the apartment --see p 244 of text*/
public static int roaches() {
        double roachVol= .001;     // Space one roach takes
        double aptVol= 20*20*8;  // Apartment volume
        double growthRate= 1.25; // Population growth rate per week

        int w= 0;        // number of weeks
        int pop= 100; // roach population after w weeks

        // inv: pop = roach population after w weeks   AND
        //        before week w, volume of the roaches < aptVol
        while (aptVol > pop * roachVol ) {
            pop= (int) (pop * growthRate);
            w= w + 1;
        }
        return w;
    }

11

Iterative version of logarithmic
algorithm to calculate b**c.

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant:  z * x**y = b**c  and 0 ≤ y ≤ c
while (y != 0) {
     if (y % 2 == 0)

{ x= x * x; y= y/2;  }
     else { z= z * x; y= y – 1; }
}
// { z = b**c }

Rest on identities:

b**0 = 1

b**c =  b  *  b**(c-1)

for even c, b**c =
(b*b)**(c/2)

 3*3 *  3*3 * 3*3  * 3*3  =
3**8

(3*3)*(3*3)*(3*3)*(3*3) =
9**4

Algorithm is logarithmic in c,
since time is proportional to log c

/** = b**c, given c ≥ 0 */
public static int exp(int b, int  c) {
    if (c ==  0) return 1;
    if (c%2 = 0) return exp(b*b, c/2);
    return b * exp(b, c–1);
}

12

Calculate quotient and remainder when dividing x by y

                 x/y = q + r/y                         21/4= 4 + 3/4

Property: x = q * y  + r   and  0 ≤ r < y

/** Set q to  and r to remainder.
      Note: x >= 0 and y > 0 */
int q= 0; int r= x;
// invariant:  x = q * y + r    and 0 ≤ r
while (r >= y) {

r= r – y;
q= q + 1;

}
// { x = q * y + r    and   0 ≤ r < y }


