
1

1

CS100J 2 Oct 2006
More on Recursion

My first job was working in an orange juice factory,
but I got canned: couldn't concentrate.

Then I worked in the woods as a lumberjack, but I
just couldn't hack it, so they gave me the axe.

After that I tried to be a tailor, but I just wasn't suited
for it. Mainly because it was a so-so job.

Next I tried working in a muffler factory but that was
exhausting.

I worked as a pilot but eventually got grounded for
taking off too much.

Then I tried teaching but I couldn't make the grade.

We derive recursive functions and look
at execution of recursive calls.

Study Sect 15.1, p. 415. Watch activity 15-2.1 on the CD. In DrJava,
write and test as many of the self-review exercises as you can
(disregard those that deal with arrays).

Get more of
these from the
course website

2

Geometry test

3

Recursive functions

/** = a copy of s in which s[0..1] are swapped, s[2..3] are
swapped, s[3..4] are swapped, etc. */

public static String swapAdjacent(String s)

/** = b c. Precondition: c ≥ 0*/
public static int exp(int b, int c)

Properties:

(1) b c = b * b c-1

(2) For c even
 b c = (b*b) c/2

e.g 3*3*3*3*3*3*3*3

 = (3*3)*(3*3)*(3*3)*(3*3)

4

Recursive functions

/** = b c. Precondition: c ≥ 0*/
public static int exp(int b, int c) {
 if (c = 0)
 return 1;
 if (c is odd)
 return b * exp(b, c–1);
 // c is even and > 0
 return exp(b*b, c / 2);
}

c number of calls
0 1
1 2
2 2
4 3
8 4
16 5
32 6
2n n + 1

32768 is 215

so b32768 needs only 16 calls!

5

Binary arithmetic
Decimal Binary Dec Binary
00 00 20 = 1 1
01 01 21 = 2 10
02 10 22 = 4 100
03 11 23 = 8 1000
04 100 24 = 16 10000
05 101 25 = 32 100000
06 110 26 = 64 1000000
07 111 215 = 32768 1000000000000000
08 1000
09 1001
10 1010

Test c odd: Test last bit = 1

Divide c by 2: Delete the last bit

Subtract 1 when odd: Change last bit from 1 to 0.

Exponentiation algorithm processes the binary representation of the
exponent. 6

Executing recursive calls

Steps in executing a call:
1. Draw a frame for the call, including the parameters and local

variables and scope box.
2. Assign argument values to the parameters.
3. Executed the method body.
4. Erase the frame —and give value of function call to caller.

method name: counter scope box

put parameters and local
variables here

2

7

Executing recursive calls

/** = n!. Precondition: n ≥ 0 */
public static int fact(int n) {
 if (n <= 1)
 return 1;
 int b = fact(n-1);
 return n * b;
}

fact: 1 scope box

n b

0! = 1. n! = n * (n-1) * (n-2) * … * 2 * 1

1. Draw frame

2. Assign argument values to parameters

3. Execute body

4. Erase frame —and give value of function call back to caller.
8

Hilbert’s space-filling curve

Hilbert(1):

Hilbert(2):

Hilbert(n):

H(n-1)
left

As the size of each
line gets smaller and
smaller, in the limit,

this algorithm fills
every point in space.
Lines never overlap.

H(n-1)
dwn

H(n-1)
dwn

H(n-1)
right

9

Hilbert’s space-filling curve

