CS100J 2 Oct 2006
More on Recursion

We derive recursive functions and look
at execution of recursive calls.

Study Sect 15.1, p. 415. Watch activity 15-2.1 on the CD. In DrJava,
write and test as many of the self-review exercises as you can
(disregard those that deal with arrays).

My first job was working in an orange juice factory,
but I got canned: couldn't concentrate.

Then I worked in the woods as a lumberjack, but I
just couldn't hack it, so they gave me the axe.

After that I tried to be a tailor, but I just wasn't suited
for it. Mainly because it was a s0-so job.

Next I tried working in a muffler factory but that was

exhausting.
I worked as a pilot but eventually got grounded for Get more of
taking off too much. these from the
Then I tried teaching but I couldn't make the grade. course website .

Geometry test

Geometry test Answer Geometry test

3. Find x. 3. Find x.

3cm
3cm

©

Recursive functions
/** = a copy of s in which s[0..1] are swapped, s[2..3] are
swapped, s[3..4] are swapped, etc. */
public static String swapAdjacent(String s)
Properties:

/#% = b €. Precondition: ¢ = 0%/ ¢ el

public static int exp(int b, int c) MbT =b*b
(2) For c even

b€ = (b*b) c/2

e.g 3#3HBABAFAFEFET

= (3%3)%(3%3)%(3%3)*(3%3)

Recursive functions

/¥% = b . Precondition: ¢ = 0%/ ¢ number of calls
public static int exp(int b, int ¢) { 0 1
if (c=0) 12
return 1;)
if (c is odd) 4 3
return b * exp(b, c—-1);
// ¢ is even and >0 8 4
return exp(b*b, ¢ / 2); 165
! 32 6
2" n+1

32768 is 215
50 b327%8 peeds only 16 calls!

Binary arithmetic

Executing recursive calls

Steps in executing a call:
1. Draw a frame for the call, including the parameters and local
variables and scope box.

2. Assign argument values to the parameters.
3. Executed the method body.
4. Erase the frame —and give value of function call to caller.

method name: counter ‘

‘ scope box

Decimal Binary Dec Binary

00 00 20=1 1

01 01 21=2 10

02 10 22=4 100

03 11 23=8 1000

04 100 24=16 10000

05 101 25=32 100000

06 110 20=64 1000000

07 111 215=32768 1000000000000000
08 1000 Test ¢ odd: Test last bit = 1
09 1001

10 1010 Divide ¢ by 2: Delete the last bit

Subtract 1 when odd: Change last bit from 1 to 0.

Exponentiation algorithm processes the binary representation of the
exponent. 5

put parameters and local
variables here

Hilbert’s space-filling curve
Executing recursive calls

Sk —) ion. % , - Hilbert(1): m
/ = n!. Pl‘.eCf)ndIIIOH: n=0% fact: 1 ‘ ‘ scope box M As the size of each
pu.bllc static int fact(int n) { line gets smaller and
if(n<=1) n |:| b |:| smaller, in the limit,
. Hilbert(2): B . .
return [; this algorithm fills
int b = fact(n-1); every point in space.
return n * b; Lines never overlap.
1 0!=1. n!l=n*m-1)*@m-2)*...*¥2%1 H(n-1) H(n-1)
. dwn dwn
Hilbert(n):
1. Draw frame
2. Assign argument values to parameters H(n-1)| | H(n-1)
left right|
3. Execute body
4. Erase frame —and give value of function call back to caller.
7 8

Hilbert’s space-filling curve

]

