
1

1

CS100J Wrapper classes, stepwise refinement 25 Sept 2007

When insults had class
"A modest little person, with much to be modest about." Churchill
"I never killed a man, but I read many obituaries with great pleasure." Clarence Darrow
"Thanks for sending me a copy of your book; I'll waste no time reading it." Moses Hadas
"He can compress the most words into the smallest idea of any man I know." Abraham
Lincoln
"I didn't attend the funeral, but I sent a nice letter saying I approved of it." Mark Twain
"I am enclosing two tickets to the first night of my new play. Bring a friend... if you have
one." George Bernard Shaw to Winston Churchill
"Cannot possibly attend first night, will attend second... if there is one." Churchill
"I feel so miserable without you; it's almost like having you here." Stephen Bishop
"He is a self-made man and worships his creator." John Bright
"I've just learned about his illness. Let's hope it's nothing trivial." Irvin Cobb
"There's nothing wrong with you that reincarnation won't cure." Jack Leonard
"He has the attention span of a lightning bolt." Robert Redford
"He inherited some good instincts from his Quaker forebears, but by diligent hard work,
he overcame them." James Reston (about Richard Nixon)

Prelim 7:30-9:00 Tuesday, 25 Sept, Olin 155. See you there

2

Wrapper classes. Read
Section 5.1 of class text

a0
Integer??? 5

At times, we wish to deal
with an int value as an
object.

"Wrapper class" Integer
provides this capability.

An instance of class Integer contains, or "wraps", one int value.

You can't change the value. The object is immutable.

Integer(int) Integer(String)
toString() equals(Object) intValue()

Instance methods: constructors, toString(), equals, intValue.

Static components:
MIN_VALUE MAX_VALUE
toString(int) toBinary(int)
valueOf(String) parseInt(String)

Static components provide extra help.

3

Each primitive type has a corresponding wrapper class. When
you want to treat a primitive value of that type as an object,
then just wrap the primitive value in an object of the wrapper
class!

Primitive type Wrapper class
int Integer
long Long
float Float
double Double
char Character
boolean Boolean

Each wrapper class has:

• Instance methods, e.g.
constructors, toString, and
equals

• Useful static constants and
methods.

You don't have to memorize the methods of the wrapper classes. But
be aware of them and look them up when necessary. Use Gries/
Gries, Section 5.1, and ProgramLive, 5-1 and 5-2, as references.

4

Anglicize integers.
Last time, we started looking at larger numbers first. We didn't finish.
This time, we start looking at smaller numbers first. This may be better
for you because it may be easier, more straightforward.

We figure out what
to do for

0 < n < 10.
10 <= n < 20.
20 <= n < 100
100 <= n < 1,000
1000 <= n < 1,000,000

Mañana principle. "Put off to tomorrow".

When it is useful, "stub in" a method, with
a good spec, to be written later, and write
calls on it.

Reasons to do so:

(a) Same computation is required in
several places.

(b) Keep one method body from getting to
long and cumbersome.

5

/** = integer n, in words. Note: ang(0) = "".
 Precondition: 0 <= n < 1,000,000. */
.public static String ang(int n) {

}

Note: As we develop the body of function ang, we may find the need
to anglicize some other integer m. W can call function ang to do it
—as long as m < n. The reason for this restriction will be seen later.
So, within ang, we can call ang. This is called recursion. We study
recursion in the next two lectures.

Sounds strange? You can see
that it works if you
remember how a function
call is executed:

1. Draw frame for the call.
2. Assign args to parameters.
3. Execute method body.
4. Erase the frame for the call and

return the value of the call.

