CS100]J Classes, stepwise refi t 20 September 2007

P

Miscellaneous points about classes.
More on stepwise refinement.

Prelim 7:30-9:00 Tuesday, 25 Sept.

Review session: 1:00-3:00, Sunday, 23
Sept., in Philips 101

Rsrecah on spleilng

Aoccdrnig to a rscheearch at Cmabirgde Uinervtisy, it deosn't
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is that the frsit and lsat Itteer be at the rghit
pclae. The rset can be a total mses and you can sitll raed it
wouthit porbelm.Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

1

Help: Get it now if you need it!!
+ One-on-one help from TAs. For info, get on the course
website and click "Staff-info".

« Call Cindy Pakkala 255-8240 for an appointment with Gries.

« See a consultant in the ACCEL Sun, Mon, Tues, Thurs
2:30pm to 11pm. Wed, 3:35-11:00pm..

« Peer tutoring (free). On http://www.engineering.cornell.edu,
click on "student services". On the page that comes up, click
on "Learning Initiatives (L.I.F.E.) in the left column, upper part.
Then, click on "peer tutoring" in the left column.

« Take an AEW courses. Ask in Olin 167.

©

Content of this lecture

This lecture contains some final miscellaneous points to round
out your knowledge of classes and subclasses. There are a few
more things to learn after this, but we”ll handle them much later.

* Inheriting fields and methods and Overriding methods.
Sec. 4.1 and 4.1.1: pp. 142-145

* Purpose of super and this. Sec. 4.1.1, pp. 144-145.

¢ More than one constructor in a class; another use of this.
Sec. 3.1.3, pp. 110-112.

* Method equals in class Object. Sec. 4.3 and 4.3.1, pp. 154-155.
(We do not cover the method at the end of Sec. 4.3.1.)

« Constructors in a subclass —calling a constructor of the
super-class. Sec. 4.1.3, pp. 147-148.

public class Employee {/** Instance: a person's name, year hired, and salary */
private String name; // Employee's name
private int start; /I Year hired
private double salary= 50000; // Salary
/** Constructor: a person with name n, year hired d, salary s */
public Employee(String n, int d) { name= n; start= d; salary=s:}

/** = name of this Employee */

public String getName() { return name; } This class is on
/** Set the name of this Employee to n */ page 105 of the
public void setName(String n) { name=n; } text.

/** = year this Employee was hired */
public int getStart() { return start; }
/#* Set the year this Employee was hired to y */
public void setStart(int y) { start=y; }
/** = Employee's total compensation (here, the salary) */
public double getCompensation() { return salary; }
/** Change this Employee’s salary to d */
public void changeSalary(double d) { salary=d; }
/** = String representation of this Employee */
public String toString()
{ return getName() + ", year " + getStart() + ", salary " + salary; } }

Employee c= new Employee(“Gries”, 1969, 50000); Sec. 4.1,

c.toString() page 142
¢

al
Which method toString()

is called? equals(Object) loString()
Employee

getName() setName(String n)

Overriding rule:

To find out which is used,
start at the bottom of the TR
class and search upward
until a matching one is
found.

salary

toString()
Also called the bottom-up rule.

Terminology. Employee inherits methods and fields from
Object. Employee overrides function toString.

Sec. 4.1, pages
Purpose of super and this 144-145
In a method, this equals the name of the object in which it appears.
super is similar but refers only to components in the super-class
partition of the object (and above).

/** = String representation of this Employee */
public String toString() {
return this.getName() +

,year” + getStart() + ", salary ” + salary;

}

ok, but unnecessary

/** = toString value from superclass */
public String toStringUp() {
return super.toString();

}

necessary

A second constructor in Employee Sec. 3.1.3,

Provide flexibility, ease of use, to user page 110

/** Constructor: a person with name n, year hired d, salary s */
public Employee(String n, int d, double s) {
name= n; start= d; salary=s; First constructor

}

/** Constructor: a person with name n, year hired d, salary 50,000 */
public Employee(String n, int d) { 3) .
name= n; start= d; salary= 50000; becohnd constructor;
) salary is always 50,000

/** Constructor: a person with name n, year hired d, salary 50,000 */
public Employee(String n, int d) {

A Another version of second
this(n, d, 50000);

constructor; calls first constructor

Here, this refers to the other constructor.
You HAVE to do it this way 7

/#* An executive: an employee with a bonus. */ Subclass Executive
public class Executive extends Employee {
private double bonus; // yearly bonus
/** Constructor: name n, year hired d, salary 50,000, bonus b */
public Executive(String n, int d, double b) {
super(n, d);
bonus= b;
¥
/** = this executive’s bonus */
public double getBonus() { return bonus; }

super(n,d) calls a constructor in the super-
class to initialize the superclass fields

/** = this executive’s yearly compensation */
public double getCompensation()
{ return super.getCompensation() + bonus; }

super. means that
the function in the

superclass will be
/** = a representation of this executive */ called.

public String toString()
{ return super.toString() + ", bonus " + bonus; }

Calling a superclass
constructor from the
subclass constructor

public class Executive extends Employee {
private double bonus;

/** Constructor: name n, year hired
d, salary 50,000, bonus b #/ a0 Sec. 4.1.3, page 147

public Executive(String n, int d, double b) { .
super(n, d): toString() ...
bonus= b; Employee

b
Employee(String, int)

} The first (and only the first) statement in
a constructor has to be a call to a
constructor of the superclass. If you
don’t put one in, then this one is
automatically used:

toString() getCompensation()

bonus 10,000 Executive

Executive(String, int, double)
getBonus() getCompensation()
toString()

super();

Principle: Fill in superclass fields first.

9

Method equals in class Object. Sec. 4.3.1,
a0 page 154

/** = *“the name of this object is the same . -
as the name of obj */ Stz
Employee

public boolean equals(Object obj)
{ return this == obj; }

equals(Object)

Write equals in class Employee

/** =*e is an Employee, with the same fields as this Employee */

public boolean equals(Employee e) { Function does not override
return e !=null

als in Object b se th
&& this.name.equals(e.name) equats mn tbject pecause the

parameter has a different type.
It’s a new, different function.
‘We'll fix redo this function
later in the course.

Don’t uSe == with Strings 0

More about equals

To test whether two String values contain
the same string, use function equals.

sl.equals(s2) is true. a0
s] ==s2 asks whether a0 ==al, | “xyz"|Sui
which is false

To test whether two Rhinos are the same
Rhino, use ==.

To test whether r2’s father is rl,
use r2.father == rl

a3 == a3

