
1

1

CS100J 18 September 2007

More on Methods. Developing methods.

Also: The inside-out rule; and
the use of this and super.

 Read sec. 2.5 on stepwise refinement
 Listen to PLive activities

 2.5.1 -- 2.5.4!
Quotes that relate to specifying a
method before writing it.
A verbal contract isn't worth the paper
it's written on.
What is not on paper has not been said.
If you don't know where you are going,
any road will take you there.
If you fail to plan you are planning to
fail.
Don’t try to solve a problem until you
know what the problem is.

Prelim: Tues 25 Sep.
7:30 to 9:00

Review: Sun. 23 Sep
1–3, Phillips 101

2

Inside-out rule
Inside-out rule in most programming languages (see p. 83):

Code in a construct can reference any of the names declared or defined
in that construct, as well as names that appear in enclosing constructs
(unless a name is declared twice, in which case the closer one prevails).

File drawer for class Elephant

Elephant
a0

name

getName()
 {return name;}

Elephant
a0

name

getName()
 {return name;}

ElephantPop

3

Inside-out rule
Inside-out rule in most programming languages (see p. 83):

Code in a construct can reference any of the names declared or defined
in that construct, as well as names that appear in enclosing constructs
(unless a name is declared twice, in which case the closer one prevails).

File drawer for class Elephant

setName(String n) {
 name= n;
}

Elephant
a0

 n

Elephant Pop

name

setName(String n) {
 name= n;
}

Elephant
a0

 n
name

4

Inside-out rule
Inside-out rule in most programming languages (see p. 83):

Code in a construct can reference any of the names declared or defined
in that construct, as well as names that appear in enclosing constructs
(unless a name is declared twice, in which case the closer one prevails).

File drawer for class Elephant

Elephant Pop

setName(String name) {
 name= name;
}

Elephant
a0

name

name

setName(String name) {
 name= name;
}

Elephant
a1

name

name

5

About using this and super
Within an object, this refers to the name of the object itself,

File drawer for class Elephant

Elephant Pop

setName(String name) {
 this.name= name;
}

Elephant
a0

name

name

setName(String name) {
 this.name= name;
}

Elephant
a1

name

name

In folder a0, this refers
to folder a0.

In folder a1, this refers
to folder a1.

6

About using this and super
Within a subclass object, super refers to the object —except the
lowest partition.

toString() { … }

otherMethod { …
 … super.toString() …
}

Object
a1

Elephant

method equals

method toString Because of the
keyword super,
this calls toString in
the Object partition.

2

7

Strings String s= "abc d"; s s2s2
String

 abc d
01234

length() charAt(i)
substring(b,e) substring(b)
equals(s1) trim()
indexOf(c) indexOf(s)
toLowerCase() startsWith(s)

Text, pp. 175–181, discusses Strings
Look in CD ProgramLive
Look at API specs for String

s.length() is 5 (number of chars)
s.char(3) is 'c' (char at position 3)
s.substring(2,4) is "c "
s.substring(2) is "c 4"
" bcd ".trim() is "bcd" (trim beginning

 and ending blanks)

DO NOT USE == TO TEST STRING EQUALITY!

s1 == s2 tests whether s1 and s2 contain the name of the same object,
not whether the objects contain the same string.

Use s1.equals(s2)
8

Developing another string function
/** Precondition: s contains at least one integer (without sign), and they are
 separated by commas (blanks are permissable after a comma). There are
 no blanks at the beginning and end of s.
 If the first integer is 0, remove it and its following comma if there is one
 (and following blanks).
 E.g. s = "52, 0, 76385" Don't change s,
 s = "000, 11" Change s to "11".
 s = "00" Change s to "".*/
public static String fix(String n)

9

Anglicizing an integer
/** = the English equivalent of n, for 1 <= n < 1,000
 e.g. ang(3) is “three”
 ang(412) is “four hundred twelve”
 ang(762) = “seven hundred sixty two” */
public static String ang(int n)

Hint at how to do it. When we add 5 + 3 + 2 + 8, we start with
x = 0 and add one value to x at a time, step by step:

x= x + 5; x= x + 3; x= x + 2; x= x + 8;

Definition of x: x is the sum of the values added so far.

Can we start with String variable s = “” and step by step
catenate pieces on to the end of it?

What’s the definition of s?
10

Anglicizing an integer
/** = the English equivalent of n, for 1 <= n < 1,000
 e.g. ang(3) is “three”
 ang(641) is “six hundred forty one” */
public static String ang(int n)

Start with String variable s = “” and step by step catenate
pieces on to the end of it? Use two local variables, s and k.

Definition of s and k:
ang(n) is s + ang(k)

To find ang(n), anglicize k and
append the result to s.

 s k
 start: “” 641
 “six hundred” 41
 “six hundred forty” 1
 end “six hundred forty one” 0

11

Anglicizing an integer
/** = the English equivalent of n, for 1 <= n < 1,000
 e.g. ang(3) is “three”
 ang(641) is “six hundred forty one” */
public static String ang(int n) {
 // ang(n) is s + ang(k)
 String s= “”;
 int k= n;

}

This definition of s and k is very important.
This definition will drive the development.
Whenever we append something to s, we have
to change k to keep the definition true. The
definition helps us develop the method body
and helps the reader understand it.

You are expected to
study section 13.4!

Whenever you declare a local variable whose value will change often over
execution of the method, write a comment near its declaration to define
it!!

You will use the definition often as you develop the method. Without the
definition, you will forget what the variable means and will make mistakes.

12

Anglicizing an integer

/** = the English equivalent of n, for 1 <= n < 1,000
 e.g. ang(3) is “three”
 ang(641) is “six hundred forty one” */
public static String ang(int n) {
 // ang(n) is s + ang(k)
 String s= “”;
 int k= n;

} The rest of this lecture is devoted to the development
of a different algorithm for anglicizing an integer
—or rather the same algorithm but expressed entirely
differently, using DrJava.

The final program will be on the course website.

