CS100J 13 Sept 2007

Congratulations!! You now know the basics of OO (object-
orientation). There are more odds and ends, which we will be
discussing, but the basics have been covered. We now turn to:

Discussion of Methods: Functions, procedures, constructors. The return
statement in a function. Executing method calls.

For this and next lecture: Read section 2.3 but NOT 2.3.8!!!!

Do the self-review exercises in 2.3.4

Method body: sequence of statements
(interspersed with declarations)
to execute, in the order in which they appear

/** Constructor: a chapter with title t, number n,
previous chapter p */
public Chapter(String t, int n, Chapter p) {

title=t; Execute the three

number= n; assignments in the

previous= p; order in which they
} appear. Same

scheme is used
when a cook uses a
recipe.

©

Oxymoron: @ combination for epigrammatic effect of contradictory or
incongruous words (as cruel kindness, laborious idleness)
airline food State worker
military intelligence peace force
Microsoft Works computer security
sanitary landfill tight slacks
religious tolerance business ethics 1
/* swap X, y to put larger /* Put smaller of X, y in z */
iny */ if (x<y){
if (x<y){ Z=X;
intt; 3
=x; if statement else { if-else statement
X=Yy; z=Yy;
y=t ¥
' Syntax:
Syntax: if (<boolean expression)
if (<boolean expression) <statementl>
<statement> else <statement2>
Execution: if the Execution: if the boolean
<boolean expression> is expression is true, then execute
true, then execute the <statement1>;
<statement> otherwise, execute <statement2>

3

A procedure does something

/** print the smallest of b, ¢, d */
public static void smallest(int b, int, c, int d) {
if(b<=c¢ &&b<=d) {

Execution of statement

System.out.println(b); return; terminates
return ; execution of the
! procedure body.

/1 { The smallest is either c or d } Nothing else is done in

if (c<=d) { the procedure body.
System.out.println(c); .
| Assertions
return;

System.out.println(exp);

/I { the sma]lei%t isd Print the value of exp on the
System.out.printin(d); console; then skip to next
} line

A function produces a result

/** = smallest of b, ¢, d */
public static int smallest(int b, int, c, int d) {

if(b<=c &&b<=d){ Execution of statement
return b; return <expr> ;
¥ .)
P terminates execution of
{/ { The smallest is either c or d } (o eRreaiTo by)
ifc<=d){ yields the value of
return c; <expr> as result of
// { the smallest is d } function call
return d;
} Assertions

Execution of a function body must end by executing a return statement.

Syntax of procedure/function/constructor and calls
public <result type> <name> (<parameter declarations>) { ... } function
public void <name> (<parameter declarations>) { ... } procedure

public <class-name> (<parameter declarations>) { ... } constructor

Exec. of a function body must terminate by executing a statement
“return <exp> ;”, where the <exp> has the <result type>.

Exec. of a proc body may terminate by executing statement “return ;”

Exec. of a constructor body initializes a new object of class <class-name>.

<name> (<arguments>) function call
<name> (<arguments>) ; procedure call
new <class-name> (<arguments>) constructor call

<arguments>: <expression>, <expression>, ..., <expression>

Local variable: a variable declared in a method body

Scope of local variable: the sequence of statements following it.

/** s contains a name in the form exemplified by “David Gries”.
Return the corresponding String “Gries, David”.
There may be 1 or more blanks between the names. */

public static String switchFormat(String s) {

// Store the first name in variable f and remove f from s

declaration int k; // Index of the first blank in s

assignment k= s.indexOf('");

String f; // The first nanje in s.
f=s.substring(0, k);

E

.substring(k);

/I Remove the blanks from s

s= s.trim();

returns+"," +f;

} scope of f

Numbering of

scope of k| characters in a String:

012345
“abcdet”

Local variable: a variable declared in a method body

Scope of local variable: the sequence of statements following it.

/** = the max of x and y */
public static int max(int x, int y) {
/I Swap x and y to put the max in x

if (x <y) {

int temp; scope of temp

temp= X;

X=Y; R

y= temp; You can’t use temp down here
} This is an error.
return x;

The frame (the box) for a method call

Remember: Every method is in a folder (object) or in a file-drawer.

method name, instruction counter

local variables

parameters

[scope box |

the number of the statement of
method body to execute next.
Helps you keep track of what
statement to execute next.

scope box contains the
name of the file-drawer or
the name of the object that
contains the method

frame for a call

/*% = the max of x and y */ Assume this method
public static int max(int x,int y) { i5in class C
Lifx<y) |

2 int temp;

3 temp= x; max: 1
4 X=Y;

5

y= temp; temp l:|
! x[]
6 returnx; y |:|

frame for a call on max

10

public class K {
intp;
public int getP() {
1 return p;

}
ao

o[]

getP()

getP: 1 ‘ ‘ a0

frame for a call on
getP of a0

frame for a call

public class K {

Execution of a method call:

intp;
.. 1. Draw the frame for the call (method
pl.lbllc int getP() { name, 1 for instruction counter, scope
1 return p; box, local vars, and parameters).
} ¥ ao 2. Assign argument values to

parameters.

P l:l getP() 3. Execute method body. Look in frame

for names; if not there, use scope box
to see where to look next.

getP: 1 ‘ ‘aO

4. Erase frame (and, if it is a function,
use the value of the return exp as the
value of the call).

frame for a call on getP
of a0

