CS100J 10 September 2007

In 1968, the Defense Department hired Bolt Beranek and Newman (BBN)
of Boston to help develop the ARPANET, which later turned into the
internet. In 1971, Ray Tomlinson of BBN was given the task of figuring out
how to send files from one person to another. He created email with file
attachments. He selected @ as the separator between an email name and
location. Names for @ in other 1 :

TODAY:
Italian: chiocciolina = little snail « Object: the superest class
French: petit escargot = little snail of them all. pp 153-154.
German: klammeraffe = spider monkey
Dutch: api = short for apestaart | * Function toString.

(monkey's tail) * Static variables and

Fi""i%h: miau = cat tail methods. Sec. 1.5 (p. 47).
Israeli: strudel = a pastry .) .
Danish: snabel = an "A" with a trunk | * Testing using JUnit.
Spanish: un arroba = a unit of about 25 pounds

Norwegian: kanel-bolle = spiral-shaped cinnamon cake

For more info: http://www.mailmsg.com/history.htm

/** Each instance describes a chapter in a book * */
public class Chapter {
private String title; // The title of the chapter
private int number; // The number of chapter page.
private Chapter previous; / previous chapter (null if none)

Download class
from course web

/#* Constructor: an instance with title t, chap n, previous chap ¢ */
public Chapter(String t, int n, Chapter c)

B N Today, we use a
{ title= t; number= n; previous=c; }

class Chapter: an
/** = title of this chapter */ instance of which
public String getTitle() { return title; } describes a book.

Class Object: The superest class of them all
Every class that does not extend another one automatically
extends class Object.
publicclassC { ... }
is equivalent to

public class C extends Object { ...}

See 1/2-page section 4.3.1 on page 154.
The reason for this will become clear later.

You need this information to do assignment A2.

/** = number of this chapter */ Here, we have a
public int getNumber() { return number; } constructor and
/** = (name of) the previous chapter (null if none) */ three getter
public Chapter getPrevious() { return previous; } methods
}
2
Class Object: The superest class of them all
Bill Bill
e
address .
equals(Object)
owes .
toString()

this/is:eally this/ name | B. Clinton || Patient

— - address
Because it is always there, to avoid

clutter, we don’t generally draw the owes
partition for superclass Object

See 1/2-page section 4.3.1 on
page 154.

4

Method toString()

Convention: c.toString() returns a Bill
representation of folder c, giving
information on the values in its fields.

Put following method in Patient. X
equals(Object)

/#* = representation of this Patient */ .
public String toString() { toString()
return name + * ” + address +

“ 7+ owes; 9
name i
) B. Clinton || Patient

address

In appropriate places, the owes
expression ¢ automatically
does c.toString() toString()

Example of toString in another class

/** An instance represents a point (X, y) in the plane */
public class Point {

private int x; // the x-coordinate

private int y; // the y-coordinate

/** Constructor: An instance for point(xx, yy) */
public Point(int xx, int yy) {

X=XX; Y=Yy, Getter and setter
} methods are not

/** = a representation of this point */ EVE @D il

public String toString() {

»

return “(” + X + .7 +y +)%

} Function toString should give the values in the
fields in a format that makes sense for the class.

A static field does not appear in each folder.
It appears in the file drawer, by itself, on a piece of paper.
There is only ONE copy of it.

Reference static variable using

public class Chapter { .
Chapter.numberChaps

private String title; // title of chapter
private static int numberChaps= 0; // no. of Chapter objects created
}
Use a static variable when you want to maintain

information about all (or some) folders.

al a0

title

title

numberChaps

File drawer for class Chapter |

Make a method static when it does not refer
to any of the fields or methods of the folder.

public class Chapter {
private int number; / Number of chapter
private static int numberOfChapters= 0;

/*%* = “This chapter has a lower chapter number than Chapter c”.
Precondition: ¢ is not null. */
public boolean isLowerThan(Chapter c) {
return number < c.number;
}
/*#% =*“b’s chapter number is lower than ¢’s chapter number”.
Precondition: b and ¢ are not null. */
public static boolean isLower(Chapter b, Chapter c) {
returfA b.number < c.number;

}

Testing --using Junit. Pages 385-388 (through Sec. 14.1.1).

Bug: Error in a program.

Testing: Process of analyzing, running program, looking for bugs.
Test case: A set of input values, together with the expected output.
Debugging: Process of finding a bug and removing it.

Get in the habit of writing test cases for a method from the
specification of the method even before you write the method.

To create a framework for testing in Drlava, select menu File
item new Junit test case.... At the prompt, put in the class
name ChapterTester. This creates a new class with that name.
Immediately save it —in the same directory as class Chapter.

The class imports junit.framework.TestCase, which provides
some methods for testing. B

1. cl=new Chapter(“one”, 1, null);
Title should be: “one”; chap. no.: 1; previous: null.
Here are two test cases
2. c2=new Chapter(“two”, 2, cl);
Title should be: “two”; chap. no.: 2; previous: c1.

/** = a String that consists of the first letter of each word in s.

E.g. for s = “Juris Hartmanis”, the answer is “JH”.
Precondition: s consists of a name in the form “first last” or
“first middle last”, with one or more blanks between each pair
of names. There may be blanks at the beginning and end.
public String initialsOf(String s) {

/%% A JUnit test case class.

* Every method starting with the word "test" will be called when running
* the test with JUnit. */

public class ChapterTester extends TestCase {

/#* A test method.

* (Replace "X" with a name describing the test. You may write as

* many "testSomething" methods in this class as you wish, and each

* one will be called when testing.) */

public void testX() {

}

} assertEquals(x,y):

test whether x equals y ; print an error message
and stop the method if they are not equal.

x: expected value,
y: actual value.

Other methods listed on page 488.

/** Test first constructor and getter methods getTitle,
getNumber, and getPrevious */ testMethods

public void testFirstConstructor() { to test getters

Chapter c1= new Chapter("one", 1, null); and setters

assertEquals("one”, c1.getTitle(),);

assertEquals(1, c1.getNumber());

CaSe assertEquals(null, c1.getPrevious());

¥

/#%* Test Setter methods setTitle, setNumber, and setPrevious */
public void testSetters() {
Chapter c1= new Chapter("one", 1, null);

one
test

cl.setTitle("new title"); Every time you
cl.setNumber(18); click button Test
Chapter c2= new Chapter("two", 2, null); in DrJava, all
cl.setPrevious(c2); methods with a
assertEquals("new title", c1.getTitle());
assertEquals(18, c1.getNumber()); nm.l;lebteSt)le;(
assertEquals(c2, cl.getPrevious()); WILHLEOEEL,
¥ 12

