
1

1
For more info: http://www.mailmsg.com/history.htm

CS100J 10 September 2007

In 1968, the Defense Department hired Bolt Beranek and Newman (BBN)
of Boston to help develop the ARPANET, which later turned into the
internet. In 1971, Ray Tomlinson of BBN was given the task of figuring out
how to send files from one person to another. He created email with file
attachments. He selected @ as the separator between an email name and
location. Names for @ in other languages:

Italian: chiocciolina = little snail
French: petit escargot = little snail
German: klammeraffe = spider monkey
Dutch: api = short for apestaart

(monkey's tail)
Finnish: miau = cat tail
Israeli: strudel = a pastry
Danish: snabel = an "A" with a trunk
Spanish: un arroba = a unit of about 25 pounds
Norwegian: kanel-bolle = spiral-shaped cinnamon cake

TODAY:
• Object: the superest class
of them all. pp 153-154.

• Function toString.

• Static variables and
methods. Sec. 1.5 (p. 47).

• Testing using JUnit.

2

/** Each instance describes a chapter in a book * */
public class Chapter {
 private String title; // The title of the chapter
 private int number; // The number of chapter
 private Chapter previous; // previous chapter (null if none)

 /** Constructor: an instance with title t, chap n, previous chap c */
 public Chapter(String t, int n, Chapter c)
 { title= t; number= n; previous= c; }

 /** = title of this chapter */
 public String getTitle() { return title; }

 /** = number of this chapter */
 public int getNumber() { return number; }

 /** = (name of) the previous chapter (null if none) */
 public Chapter getPrevious() { return previous; }
}

Today, we use a
class Chapter: an
instance of which
describes a book.
Here, we have a
constructor and

three getter
methods

Download class
from course web

page.

3

Class Object: The superest class of them all

See 1/2-page section 4.3.1 on page 154.

The reason for this will become clear later.

You need this information to do assignment A2.

Every class that does not extend another one automatically
extends class Object.

public class C { … }

is equivalent to

public class C extends Object { …}

4

Class Object: The superest class of them all
Bill

Patientname B. Clinton

address New York
owes $250.00

See 1/2-page section 4.3.1 on
page 154.

Bill

Patientname B. Clinton

address New York
owes $250.00

equals(Object)

toString()

this is really this

Object

Because it is always there, to avoid
clutter, we don’t generally draw the
partition for superclass Object

5

Method toString()

Bill

Patientname B. Clinton

address New York

owes

toString()

$250.00

equals(Object)

toString()

Object

Convention: c.toString() returns a
representation of folder c, giving
information on the values in its fields.

Put following method in Patient.

/** = representation of this Patient */
public String toString() {
 return name + “ ” + address +
 “ ” + owes;
}

In appropriate places, the
expression c automatically
does c.toString()

6

Example of toString in another class

/** An instance represents a point (x, y) in the plane */
public class Point {

private int x; // the x-coordinate
private int y; // the y-coordinate
/** Constructor: An instance for point(xx, yy) */
public Point(int xx, int yy) {

x= xx; y= yy;
}

/** = a representation of this point */
public String toString() {

 return “(” + x + “, ” + y + “)”;
}

}

Getter and setter
methods are not

given on this slide

Function toString should give the values in the
fields in a format that makes sense for the class.

2

7

A static field does not appear in each folder.
It appears in the file drawer, by itself, on a piece of paper.

There is only ONE copy of it.

public class Chapter {
 private String title; // title of chapter
 private static int numberChaps= 0; // no. of Chapter objects created
}

Reference static variable using
Chapter.numberChaps

a0

Chaptertitle “peace”

a1

Chaptertitle “truth”

numberChaps 2
File drawer for class Chapter

Use a static variable when you want to maintain
information about all (or some) folders.

8

Make a method static when it does not refer
to any of the fields or methods of the folder.

public class Chapter {
 private int number; // Number of chapter
 private static int numberOfChapters= 0;

 /** = “This chapter has a lower chapter number than Chapter c”.
 Precondition: c is not null. */
 public boolean isLowerThan(Chapter c) {

return number < c.number;
 }

}

/** = “b’s chapter number is lower than c’s chapter number”.
 Precondition: b and c are not null. */
public static boolean isLower(Chapter b, Chapter c) {
 return b.number < c.number;
}

9

Testing --using Junit. Pages 385-388 (through Sec. 14.1.1).

Bug: Error in a program.
Testing: Process of analyzing, running program, looking for bugs.
Test case: A set of input values, together with the expected output.
Debugging: Process of finding a bug and removing it.

Get in the habit of writing test cases for a method from the
specification of the method even before you write the method.

To create a framework for testing in DrJava, select menu File
item new Junit test case…. At the prompt, put in the class
name ChapterTester. This creates a new class with that name.
Immediately save it —in the same directory as class Chapter.

The class imports junit.framework.TestCase, which provides
some methods for testing. 10

1. c1= new Chapter(“one”, 1, null);
Title should be: “one”; chap. no.: 1; previous: null.

2. c2= new Chapter(“two”, 2, c1);
Title should be: “two”; chap. no.: 2; previous: c1.

Here are two test cases

/** = a String that consists of the first letter of each word in s.
 E.g. for s = “Juris Hartmanis”, the answer is “JH”.
Precondition: s consists of a name in the form “first last” or
“first middle last”, with one or more blanks between each pair
of names. There may be blanks at the beginning and end.
public String initialsOf(String s) {
 …
}

11

/** A JUnit test case class.
 * Every method starting with the word "test" will be called when running
 * the test with JUnit. */
public class ChapterTester extends TestCase {

 /** A test method.
 * (Replace "X" with a name describing the test. You may write as
 * many "testSomething" methods in this class as you wish, and each
 * one will be called when testing.) */
 public void testX() {
 }
} assertEquals(x,y):

test whether x equals y ; print an error message
and stop the method if they are not equal.
x: expected value,
y: actual value.
Other methods listed on page 488.

12

/** Test first constructor and getter methods getTitle,
 getNumber, and getPrevious */
public void testFirstConstructor() {
 Chapter c1= new Chapter("one", 1, null);
 assertEquals("one”, c1.getTitle(),);
 assertEquals(1, c1.getNumber());
 assertEquals(null, c1.getPrevious());
}

Every time you
click button Test

in DrJava, all
methods with a
name testXXX
will be called.

one
test
case

/** Test Setter methods setTitle, setNumber, and setPrevious */
public void testSetters() {
 Chapter c1= new Chapter("one", 1, null);
 c1.setTitle("new title");
 c1.setNumber(18);
 Chapter c2= new Chapter("two", 2, null);
 c1.setPrevious(c2);
 assertEquals("new title", c1.getTitle());
 assertEquals(18, c1.getNumber());
 assertEquals(c2, c1.getPrevious());
}

testMethods
to test getters

and setters

