CS100J 6 Sept 2007. Customizing a class & testing

« Fields (variables in a folder), and getter & setter methods. Secs
1.4.1 (p. 45) & 3.1 (pp. 105-110 only)

¢ Constructors. Sec. 3.1.3 (p. 111-112)

¢ Testing methods. Appendix 1.2.4 (p. 486)

Quiz 2 on Tuesday (13 September):
How do you evaluate a new expression (see slide 6)?
What is the purpose of a constructor (see slide 5)?

Quote for the day:

There is no reason anyone would want a computer in their home. -
-Ken Olson, founder of Digital Equipment Corp. (DEC), 1977.

The company was a huge player in computer hardware and software in CS
academia in the 1970’s. The PDP machines were well known. The VAX had
unix on it, and C, and Lisp. It was the main computer in most CS departments
of any stature. DEC was bought by COMPAQ in the late 1990’s. 1

Field: a variable that is in each folder of a class.

We generally make fields a0

private instead of public, so

that they cannot be referenced
the class. number

from methods that are outside

public class Chapter {
private String title; // Title of the chapter
private int number; / Number of the chapter

private Chapter previous; // previous chapter (null if none)

}

2

One-on-One Sessions

Next week (and going into the next week), we want to hold a 1/2-
hour one-on-one session on a computer with each student in CS100J.

Purpose: See how well you understand what we have done, let you
ask questions, and give you help. Graded on a 0-1 basis —you get 1
if you took part in a session. The purpose is not to give you a mark
that will contribute to your course grade but simply to help you.

Instructors in these sessions: Gries, TAs, a few consultants.
How to sign up: Visit the CMS for the course,

Click on the assignment One-on-one Session. You will see a list of
times and instructors. Choose one. First-come-first-served basis.

Not registered in the CMS? Email Amy Fish immediately and ask
her to register you: amyfish@cs.cornell.edu@cs.cornell.edu

Getter and setter methods

/** An instance describes a chapter of 20
a book */
public class Chapter {

private String title; // Title of the chapter title |:|
/%% = the title of the chapter */ number |:|

public String getTitle() { 9
return title; previous
¥
getTitle() setTitle(String t)
/%% Set the title of the chapter to t */
public void setTitle(String t) {
title=t;

) Getter methods (functions) get

or retrieve values from a folder.

Setter methods (procedures) set
or change fields of a folder

We need a way to initialize fields
when a folder is first created

new Chapter() 20
e [ Jlceer]

new Chapter(“I am born”, 1, null) RIEVIONS |:|

getTitle() setTitle(String t)

creates a folder but doesn’t allow us to
say what values should be in it.

‘We would like to be able to say:

to set the title to “T am born”, the
chapter number to 1, and the previous
chapter to null.

For this, we use a new kind of method, the constructor.

Purpose of a constructor:
To initialize (some) fields of a newly created folder
/** An instance describes a chapter of

a book */ 20
public class Chapter {
private String title; // Title of chapter )
private int number; // No. of chapter title |:|

private Chapter previous; // previous
// chapter (null if none) number |:|
X o previous |:|
/** Constructor: an instance with title t,
chapter number i, and previous
chapter p (null if none) */
public Chapter(String t, int i,
Chapter p) {

getTitle() setTitle(String t)

Chapter(String t,
int i, Chapter c)

title=t;
number= i;
previous= p;
} Do not put a type or void here

} 6

The name of a constructor is the name of the class.




New description of execution of a new-expression

new Chapter(“I am born”, 1, null)

a0
1. Create a new folder of class Chapter, title |:|
with fields initialized to default
values (0 for int, for example) —of number |:|
course, put the folder in the file drawer.
previous |:|
2. Execute the constructor call

getTitle() setTitle(String t)
Chapter(“I am born”, 1, null)
Chapter(String t,
3. Use the name of the new folder as int i, Chapter c)
the value of the new-expression.

Memorize this new definition! Today! Now!

Testing —using JUnit

Bug: Error in a program.

Testing: Process of analyzing, running program, looking for bugs.
Test case: A set of input values, together with the expected output.
Debugging: Process of finding a bug and removing it.

Get in the habit of writing test cases for a method from the
specification of the method even before you write the method.

A feature called Junit in DrJava helps us develop test cases
and use them. You have to use this feature in assignment Al.

1. cl=new Chapter(“one”, 1, null);
Title should be: “one”; chap. no.: 1; previous: null.

2. 2= new Chapter(“two”, 2, c); Here are two test cases
Title should be: “two™; chap. no.: 2; previous: cl.

‘We need a way to run these test cases, to see whether the fields are
set correctly. We could use the interactions pane, but then repeating
the test is time-consuming.

To create a testing framework: select menu File item new Junit test
case.... At prompt, put in class name ChapterTester. This creates a
new class with that name. Save it in same directory as class Chapter.

The class imports junit.framework.TestCase, which provides some
methods for testing. 9

/** A JUnit test case class.

* Every method starting with the word "test" will be called when running
* the test with JUnit. */

public class ChapterTester extends TestCase {

/** A test method.

* (Replace "X" with a name describing the test. You may write as
* many "testSomething" methods in this class as you wish, and each
* one will be called when testing.) */

public void testX() {

}

One method you can use in testX is
assertEquals(x,y)

which tests whether expected value x equals y

10

A testMethod to test constructor and getter methods
/** Test first constructor and getter methods getTitle,
getNumber, and getPrevious */ assertEquals(x,y):
public void testConstructor() {
first Chapter c1=new Chapter("one", 1, null); test whether x equals y ;

iost assertEquals("one”, cl.getTitle(), ); prim an error message
assertEquals(1, c1.getNumber()); and stop the method if
case assertEquals(null, c1.getPrevious()); they are not equal.
second Chapter c2=new Chapter('two", 2, cl); ~ X: expected value,
- assertEquals("two”, c2.getTitle()); y: actual value.
€

assertEquals(2, c2.getNumber()); A th thods that
case assertEquals(cl, c2.getPrevious()); ew other me AO S thal
) can be used are listed on

page 488.

Every time you click button Test in
DrJava, this method (and all other
testX methods) will be called. "




