
1

1

CS100J 6 Sept 2007. Customizing a class & testing

Quote for the day:
There is no reason anyone would want a computer in their home. -
-Ken Olson, founder of Digital Equipment Corp. (DEC), 1977.
The company was a huge player in computer hardware and software in CS
academia in the 1970’s. The PDP machines were well known. The VAX had
unix on it, and C, and Lisp. It was the main computer in most CS departments
of any stature. DEC was bought by COMPAQ in the late 1990’s.

Quiz 2 on Tuesday (13 September):
How do you evaluate a new expression (see slide 6)?
What is the purpose of a constructor (see slide 5)?

• Fields (variables in a folder), and getter & setter methods. Secs
1.4.1 (p. 45) & 3.1 (pp. 105–110 only)

• Constructors. Sec. 3.1.3 (p. 111–112)
• Testing methods. Appendix I.2.4 (p. 486)

2

Field: a variable that is in each folder of a class.

a0

Chaptertitle …

number …
previous …

public class Chapter {

 private String title; // Title of the chapter

 private int number; // Number of the chapter

 private Chapter previous; // previous chapter (null if none)
}

We generally make fields
private instead of public, so
that they cannot be referenced
from methods that are outside
the class.

3

One-on-One Sessions

Next week (and going into the next week), we want to hold a 1/2-
hour one-on-one session on a computer with each student in CS100J.

Purpose: See how well you understand what we have done, let you
ask questions, and give you help. Graded on a 0-1 basis —you get 1
if you took part in a session. The purpose is not to give you a mark
that will contribute to your course grade but simply to help you.

Instructors in these sessions: Gries, TAs, a few consultants.
How to sign up: Visit the CMS for the course,

http://cms3.csuglab.cornell.edu/

Click on the assignment One-on-one Session. You will see a list of
times and instructors. Choose one. First-come-first-served basis.

Not registered in the CMS? Email Amy Fish immediately and ask
her to register you: amyfish@cs.cornell.edu@cs.cornell.edu

4

Getter and setter methods

a0

Chaptertitle …

number …
previous …

/** An instance describes a chapter of
 a book */
public class Chapter {
 private String title; // Title of the chapter

 /** = the title of the chapter */
 public String getTitle() {
 return title;
 }

 /** Set the title of the chapter to t */
 public void setTitle(String t) {
 title= t;
 }

}

Getter methods (functions) get
or retrieve values from a folder.

Setter methods (procedures) set
or change fields of a folder

getTitle() setTitle(String t)

5

We need a way to initialize fields
when a folder is first created

new Chapter()

creates a folder but doesn’t allow us to
say what values should be in it.

We would like to be able to say:

new Chapter(“I am born”, 1, null)

to set the title to “I am born”, the
chapter number to 1, and the previous
chapter to null.

For this, we use a new kind of method, the constructor.

a0

Chaptertitle …

number …
previous …

getTitle() setTitle(String t)

6

Purpose of a constructor:
 To initialize (some) fields of a newly created folder

/** An instance describes a chapter of
 a book */
public class Chapter {
 private String title; // Title of chapter
 private int number; // No. of chapter
 private Chapter previous; // previous
 // chapter (null if none)

 /** Constructor: an instance with title t,
 chapter number i, and previous
 chapter p (null if none) */
 public Chapter(String t, int i,
 Chapter p) {
 title= t;
 number= i;
 previous= p;
 }
}

a0

Chaptertitle …

number …
previous …

getTitle() setTitle(String t)

Chapter(String t,
 int i, Chapter c)

The name of a constructor is the name of the class.

Do not put a type or void here

2

7

New description of execution of a new-expression

new Chapter(“I am born”, 1, null)

1. Create a new folder of class Chapter,
 with fields initialized to default

values (0 for int, for example) –of
course, put the folder in the file drawer.

2. Execute the constructor call

Chapter(“I am born”, 1, null)

3. Use the name of the new folder as
 the value of the new-expression.

Memorize this new definition! Today! Now!

a0

Chaptertitle …

number …
previous …

getTitle() setTitle(String t)

Chapter(String t,
 int i, Chapter c)

8

Testing —using JUnit

Bug: Error in a program.

Testing: Process of analyzing, running program, looking for bugs.

Test case: A set of input values, together with the expected output.

Debugging: Process of finding a bug and removing it.

Get in the habit of writing test cases for a method from the
specification of the method even before you write the method.

A feature called Junit in DrJava helps us develop test cases
and use them. You have to use this feature in assignment A1.

9

1. c1= new Chapter(“one”, 1, null);
Title should be: “one”; chap. no.: 1; previous: null.

2. c2= new Chapter(“two”, 2, c);
Title should be: “two”; chap. no.: 2; previous: c1.

To create a testing framework: select menu File item new Junit test
case…. At prompt, put in class name ChapterTester. This creates a
new class with that name. Save it in same directory as class Chapter.

The class imports junit.framework.TestCase, which provides some
methods for testing.

We need a way to run these test cases, to see whether the fields are
set correctly. We could use the interactions pane, but then repeating
the test is time-consuming.

Here are two test cases

10

/** A JUnit test case class.
 * Every method starting with the word "test" will be called when running
 * the test with JUnit. */
public class ChapterTester extends TestCase {

 /** A test method.
 * (Replace "X" with a name describing the test. You may write as
 * many "testSomething" methods in this class as you wish, and each
 * one will be called when testing.) */
 public void testX() {
 }
}

One method you can use in testX is

assertEquals(x,y)

which tests whether expected value x equals y

11

A testMethod to test constructor and getter methods
/** Test first constructor and getter methods getTitle,
 getNumber, and getPrevious */
public void testConstructor() {
 Chapter c1= new Chapter("one", 1, null);
 assertEquals("one”, c1.getTitle(),);
 assertEquals(1, c1.getNumber());
 assertEquals(null, c1.getPrevious());

 Chapter c2= new Chapter("two", 2, c1);
 assertEquals("two”, c2.getTitle());
 assertEquals(2, c2.getNumber());
 assertEquals(c1, c2.getPrevious());
}

Every time you click button Test in
DrJava, this method (and all other
testX methods) will be called.

first
test
case

second
test
case

assertEquals(x,y):

test whether x equals y ;
print an error message
and stop the method if
they are not equal.

x: expected value,
y: actual value.

A few other methods that
can be used are listed on
page 488.

