CS100J About Prelim III: Tuesday, 7:30--9:00PM, 13 Nov., Uris Auditorium
Review session: Sunday, 11 Nov, 1:00--3:00. Philips 101

For this prelim, you need to know everything that you
needed to know for the first two prelims (see review
below). In addition:

For loops. We may give you a problem that requires
you to write a loop (with initialization) that processes a
range of integers. You should be able to write a post-
condition, then write the loops header "for (int k ...)",
then write a loop invariant, and finally develop the
various parts of the loops and initialization.

While loops. We may give you a precondition, post-
condition, and a loop invariant, and you will have to
develop the loop, with initialization, from it. The grade
will depend on how well you deal with the four loopy
questions and the given invariant. Please remember
that the only variables that should be used (outside of
variables declared in the repetend) are variables that
are mentioned in the loop invariant.

Arrays. Everything on Sects 8.1 and 8.2 of the class
text —these pages discuss the technical details for us-
ing arrays in Java and for reasoning about arrays. Two
dimensional arrays: You should know how to declare
and use rectangular arrays but not ragged; see Sects.
9.1,9.2,9.3.1.

Algorithms. You should know the following algo-
rithms. For example, if we ask "what is algorithm parti-
tion", you should be able to write the precondition and
postcondition (we won't give them to you), write down
the invariant, and then develop the loop with initializa-
tion. These algorithms are discussed in the text, on the
ProgramLive CD, or in lectures notes:

Algorithm Binary search (Sec. 8.5.3)
Algorithm Dutch national flag (done in lecture)
Algorithm Find minimum (Sec. 8.5.1)
Algorithm Partition (PLive activity 8-5.5

class notes may be better
Algorithm Selection sort (Sec. 8.5.4)
Algorithm Insertion sort (Sec. 8.5.5)

On selection sort and insertion sort, we will not want to
see the inner loops. The repetends of these algorithms
should be written at a high level, stating what is done
and not how it is done, as discussed in the text and in
lecture. Since you know that at least one of these will
be on the test, please practise developing all of them.
Answering a question on one of these should take 5
minutes, because you know how to develop them.

Classes String and Vector. We use these all the time.
You are expected to know the basic methods of these
classes: For class String: charAt(i), substring(i), sub-
string(i,j), length(). For Vector: add(ob), set(i, ob),
get(i), size(). If a question calls for other methods of
the classes, we will define them for you. You should
know that new Vector<Cat>(...) creates a Vector
whose elements are of class <Cat>.

Classes and subclasses. You will have to write parts
of classes/subclasses as on prelims II and II. Two ways
to study: (1) Make sure you know the definitions be-
low, and (2) Practice writing classes and subclass defi-
nitions. Apparent and real types of a variable are im-
portant in understanding what components can and
cannot be referenced. Take a look at other texts on Java
and see what exercises they have for writing classes.
Also, know that the definitions of the fields, together
called the “class invariant”, has to be kept true by all
methods. Finally, when writing classes, write them in
DrJava so you can test your syntax.

GUIS. We will not ask you questions about GUIs.

Definitions. Below is a collection of definitions. You
are expected to know these backward and forward. On
the test, wishywashy definitions will not get much
credit. They must be the same as, or similar to, the ones
below --and they must be correct. Learn these not by
reading but by practicing writing them down, or have a
friend ask you these and repeat them out loud. You
should be able to write programs that use the concepts
defined below, and you should be able to draw folders
and execute method calls, drawing the frames for the
calls.

Variable: A named box that can contain a value of
some type or class. For a type like int, the value is an
integer. For a class, it is the name of (or reference to)
an instance of the class —the name that appears on the
folder.

Declaration of a variable: a definition of the name of
the variable and the type or class of value it can con-
tain. Basic syntax: #ype variable-name

Four Kkinds of variable: parameter, local variable, in-
stance variable (or field), static variable (or class vari-
able).

Parameter: A variable that is declared within the pa-
rentheses of a method header. The variable is drawn in
a frame for a call on the method.

Local variable: A variable declared in the body of the
method. It is drawn in a frame for a call on the method.

Instance variable: A variable that is declared in a class
without modifier static. An instance variable is placed
in every folder of the class.

Static variable: A variable that is declared in a class
with modifier static. A static variable is placed in the
file drawer for the class in which it is declared.

Three kinds of method: procedure, function, construc-
tor:

procedure definition has keyword veid before the
procedure name. A procedure call is a statement.



CS100J About Prelim III: Tuesday, 7:30--9:00PM, 13 Nov., Uris Auditorium
Review session: Sunday, 11 Nov, 1:00--3:00. Philips 101

function definition has the result type in place of void.
A function call is an expression; its value is the value
returned by the function.

constructor definition has neither keyword void nor a
type, and its name is the same as the name of the class
in which it appears. The constructor call is a statement,
whose purpose is to initialize (some of) the fields of a
newly created folder.

Argument: An expression that occurs within the pa-
rentheses of a method call (arguments are separated by
commas).

Folder (manila folder, object, or instance) of a class.
An entity that is drawn like a manila folder. It has a
name or label on its tab. Its contents are the instance
methods and instance fields defined in the class defini-
tion. We assume you can draw a folder, or instance, of
a class. For subclasses, remember that the folder has
more than one partition. Look at the homework we had
on drawing folders.

New-expression. An expression of the form “new
class-name (arguments)”. It is evaluated as follows: (1)
create a new folder of class class-name and put it in
class-name's file drawer. (2) Execute the constructor
call “class-name (arguments)”’; where the method
called appears in the newly created folder. (3) Yield as
the result of the new-expression the name of the folder
created in step (1).

Frame for a method call. The frame for a method call
contains: (1) the name of the method and the program
counter, in a box in the upper left, (2) the scope box
(see below), (3) the local variables of the method, (4)
the parameters of the method.

The scope box for a call contains: For a static method,
the name of the class; for an instance method, the name
of the folder in which the instance appears.

To execute a method call:

1. Draw a frame for the call. (Fill in its name and pro-
gram counter in the upper left box. Fill in its scope box
on the upper right with either the name of the class in
which the method is defined (static method) or the
name of the folder in which the method appears (non-
static method). Draw local variables and parameters.)

2. Assign the values of the argument to the parameters.

3. Execute the method body. When a name is used,
look for it in the frame for the call. If it is not there,
look in the place given by the scope box.

4. Erase the frame for the call.

Class Object. Every class that does not explicitly ex-
tend another subclass automatically extends class Ob-

ject. Class Object has at least two instance methods:
toString and equals.

Calling one constructor from another. In one con-
structor, the first statement has to be a call on another
constructor in the same class (use keyword this instead
of the class-name) or a call on a constructor of the su-
perclass (use keyword super instead of the class-
name). If a constructor call is not the first statement,
the call super(); is automatically inserted for you.

Overriding a method. In a subclass, one can redefine
a method that was defined in a superclass. This is
called overriding the method. In general, the overriding
method is called. To call the overridden method m
(say) of the superclass, use the notation super.m(...).

Real and apparent class. A variable x defined using,
say, C x; has apparent class C. The apparent class is
used in determine whether a reference to a field or
method is syntactically legal or not. One can write
x.m(...), for example, if and only if method m is de-
clared or is inherited in class C. The real class of x is
the class of an object that is in x. It could be a subclass.
If x.m(...) is legal, then it calls the method that is acces-
sible in the real class, not the apparent class.

Casting and instanceof. Just as one can cast an int i to
another type, using, say, (byte) i or (double) i, one can
cast a variable of some class-type variable to a super-
class or subclass. You should know how to use opera-
tor instanceof. See Sect. 4.2 and 4.3 of the text.



