CS100J Fall 2007 Assignment A7. Due Tuesday, 20 November

0. Introduction

This assignment deals with .jpg images. You will learn about how images are stored; write code to transpose im-
ages; and learn about filtering images. You will learn a bit about how GUIS (Graphical User Interfaces) are con-
structed in Java. Finally, you will have practice with loops and one- and two-dimensional arrays.

Download either file a7.zip OR the files indicated on the course website and put them into a new folder. Two
images are included. Put everything in the same folder. To get an idea of what the program does, do this:

(1) Open file ImageJFrame in DrJava and compile it.

(2) In the interactions pane, type this: j= new ImageJFrame(); A dialog window will open. Navigate to a
folder that contains a jpg file and select it. A window will open, with two versions of the image, some but-
tons, and a text area. The left image will not change; it is the original image. The right image will change as
you click buttons.

(3) See what buttons invert and horiz reflect do. After any series of clicks on these, you can always
click button restore to get back the original file.

(4) You can try buttons transpose and £ilter but they won’t work until you write code to make them work.

We now explain a little bit about the classes in this assignment and about images. You don’t have to learn all this
by heart, but you would do well to study the code, being conscious of how precise the specs are and how well the
Java code is written. Section 7 explains what you have to do for this assignment.

1. Separation of concerns

It is important to organize the parts of a program in a logical coherent way, in which it is clear what each part is
responsible for and in which interactions are kept reasonable. The larger and more complicated the task of the pro-
gram, the more important it is to have a good organization.

This program has two main functions: manipulating an image and providing a GUI. These two issues should be
separated as much as possible in the program.

An object of class Image, in an API package, maintains an image. Our own class ImageMap provides more
useable methods for manipulating an image, allowing one to view it as a two-dimensional table or as a one-
dimensional array of pixels, kept in row-major order (the elements of row 0, then the elements of row 2, then the
elements of row 3, etc.). It has a field that contains the Image itself.

Class ImageMaintainer provides methods for manipulating the image, maintained as an ImageMap. Ima-
geMaintainer knows nothing about the GUI; it simply calculates.

Class ImagePanel provides part of the GUI. A subclass of JPanel, it can display an image through its
method paint. When an image is changed in any way, the corresponding JPanel object has to be notified so that
it can revise the size of the panel; that is the purpose of method formImage.

Class ImageFrame provides the GUI. It places buttons and ImagePanels in the window, and it “listens” to
button clicks and acts accordingly, calling appropriate methods in ImageMaintainer, then calling on an Im-
agePanel to revise its view, and then repainting the GUIL.

2. Class Image and class ImageMap

An instance of class Image can contain a jpg image (or some other formats as well). Just how the image is
stored is not our concern; the class hides such details from us. Abstractly, the image consists of a rectangular array
of pixels (picture elements), where each pixel entry is an integer that describes the color of the pixel. We show a 3-
by-4 array below, with 3 rows and 4 columns, where each E1ij is a pixel.

E1l1 El12 E13 E14
E21 E22 E23 E24
E31 E32 E33 E34

An image with r rows and ¢ columns could be placed in an int[][] array b[0..r-1][0..c-1]. How-
ever, class Image provides us with something different; it gives us the pixels in a one-dimensional array
map[0..r*c-1]. For the 3-by-4 image shown above, array map would contain the elements in row-major order:

Ell, El12, E13, E21, E22, E23, E31, E32, E33
Class ImageMap provides an internal representation of an image —array map— along with methods for deal-
ing with it. You can change the image by calling its methods getPixel(row,col), setPixel
(row,col,v), and SwapPixels(a,b,1i,Jj). So, for a variable im of class ImageMap, instead of writing
something like im[h, k]= wv; to set an element of an image to p, write image.setPixel(h, k, v); . Note
also that you can reference pixels in row-major order in a one-dimensional array. For example, there are methods
getPixel(p) and setPixel(p, V). That’s all you need to know to manipulate images in this assignment.
Here’s more info on class ImageMap. Note that the class has a field map. The constructor has this in it:
map= new int[r*c]; // Create the array to contain the pixel-map
PixelGrabber pg= new PixelGrabber(im, 0, 0, c, r, map, 0, c);
pg.grabPixels();

This statement sequence stores in pg an instance of class PixelGrabber that has associated image im with our
array map. The third statement stores the pixels of the image in array map.

Once an ImageMap is created for an Image, methods ImageMap.setPixel, ImageMap.getPixels,
and ImageMap.SwapPixels can be used to manipulate the image.

3. Pixels and the RGB system

Your monitor uses the RGB (Red-Green-Blue) system for images. Each RGB component is given by a number
in the range 0..255 (8 bits). Black is represented by (0, 0, 0), red by (255, 0, 0), green by (0, 255, 0), blue by (0, 0,
255), and white by (255, 255, 255). The number of RGB colors is 2-* =16,777,216.

A pixel is stored in a 32-bit (4 byte) word. The red, green, and blue components each take 8 bits. The remaining
8 bits are used for the “alpha channel”, which is used as a mask to make certain areas of the image transparent —in
those software applications that use it. We will not change the alpha channel of a pixel in this assignment.

The elements of a pixel are stored in a 32-bit word like this:

8 bits 8 bits 8 bits 8 bits
alpha | red | green | blue |

Suppose we have the green component (in binary) g = 01101111 and a blue componentb = 00000111,
and suppose we want to put them next to each other in a single integer, so that it looks like this in binary:

0110111100000111
This number can be computed using g*2 8 4 b, but this calculation is inefficient. Java has an instruction that shifts
bits to the left, filling the vacated spots with 0’s. We give three examples, using 16-bit binary numbers.

0000000001101111 << 1 is 0000000011011110
0000000001101111 << 2 is 0000000110111100
0000000001101111 << 8 is 0110111100000000

Secondly, operation | can be used to “or” individual bits together:

0110111100000000 | 0011 |
0000000010111110 1010
is 0110111110111110 is 1011

Therefore, we can put an alpha component alpha and red-green-blue components r, g, and b together into a
single 32-bit int value —a pixel— using this expression:
(alpha << 24) | (r << 16) | (g << 8) | b
Take a look at method ImageMaintainer.invert. For each pixel, the method extracts the 4 components of
the pixel, inverts the red, green, and blue components (e.g. the inversion of red is 255 — red), reconstructs the
pixel using the above formula, and stores the new pixel back in the image.

4. Class ImagePanel

We suggest you read this section with class ImagePanel open in DrJava. A JPanel is a component that can
be placed in a JFrame. We want a JPanel that will contain one Image. So, we define a class ImagePanel that
extends class JPanel.

Class ImagePanel has two fields: one contains (the name of) the image object; the other contains (the name
of) the JFrame object in which the ImagePanel object is placed. You can see how the constructor places values
in these fields and also sets the size and “preferred size” of the ImagePanel to the dimensions of the image —this
preferred size is used by the system to determine the size of the JFrame when it is shown.

Method paint is important. Whenever the system wants to redraw the panel (perhaps it was covered and is now
no longer covered), the system calls method paint, which calls drawImage of the graphics to draw the image.

Finally, method formImage is called by our own program whenever it determines that the image has been
changed, e.g. after inverting the image. The method gets the image from ImageMap map and resets the size and pre-
ferred size.

How does one learn to write all this code properly? When faced with doing something like this, most people will
start with other programs that do something similar and modify them to fit their needs (as we did).

5. Class ImageJFrame

A JFrame is a window on your monitor. In this assignment, we want a window that contains two versions of an
image. Therefore, class ImageJFrame extends JFrame. Take a look at these components of class Image-
JFrame (there are others, which you need not look at now).

Fields originalPanel and currentPanel contain the panels for the original and manipulated images.

Constructors: There are two constructors. One is given an image. The other has no parameters; it gets the image
using a dialog with the user; the user can navigate on their hard drive and choose which image to work with. This is
similar to obtaining a file to read, which you learned about in a Lab.

Method setUp. Both constructors call this private method. The method puts the buttons into the JFrame —we’ll
learn about this later. It then adds a labeled text area, which you will use in assignment A8. Then, provided there is
an image, it creates two panels with the image in it and adds them to the JFrame, using the call add (Border-
Layout.CENTER, imagebox) ;. It creates an instance of class ImageMaintainer, which will contain meth-
ods to manipulate the object. Finally, it fixes the location makes the JFrame visible, and “packs” and repaints it.

The call of method setDefaultCloseOperation near the end of setUp fixes the small buttons in the
JFrame so that clicking the “close” button causes the window to disappear and the program to terminate.

For more information on placing components in a JFrame, turn to Chapter 17 of the text. The most efficient
and enjoyable way to learn about GUISs is to listen to lectures on the ProgramLive CD.

Methods to manipulate the image. At the bottom of the class are methods to (1) restore, invert, and transpose the
image; (2) to filter an image, and (3) to hide and retrieve a message in the image (you do not have complete these!).
They are placed here to make it easy to perform these functions in the interactions pane. They work by calling meth-
ods in class ImageMaintainer. You have to write several of these methods.

Methods to make the buttons available to the program. A set of methods are used to connect the clicking of a
button on the window to the program. You don’t have to look at these. We’ll give some idea on how they work later.
6. Class ImageMaintainer

Class ImageMaintainer provides all the methods for manipulating the image given to it in the constructor,
as an ImageMap. The constructor stores the map in field originalMap and stores a copy of it in currentMap.

As the image is manipulated, object currentMap changes. It can be restored to its original by copying field
originalMap into currentMap. That’s what procedure restore (near the end of the class) does.

Procedures invert, hreflect, and restore are complete. Procedure invert inverts the image (makes a
negative out of a positive, and vice versa). Look at its code to see how it processes each pixel —first retrieving it,
then changing its parts, and finally placing the changed pixel back into imageMap.

7. The methods you will write.
Implement the methods in class ImageMaintainer as explained below.

7A. Implement method vreflect. This method should reflect the image around its vertical middle. Look at method
hreflect to get an idea about how to do it.

In order to get this method to work from the GUI, you have to change the GUI, as follows. Look at function Im-
ageJFrame.setup. (1) After the addition of button buttonhreflect to buttonBox, insert a statement to
add button buttonvreflect to buttonBox (the button is already declared). (2) Take a look at the code that
makes this (i.e. this object) a listener to the various buttons. Insert a statement to add this as a listener to but-
tonvreflect.

7B. Implement method transpose. Below is an array. To its right is its transpose: each row k of the original
array becomes column k in its transpose.

array transpose
01 02 03 04 01 06 11
06 07 08 09 02 07 12
11 12 13 14 03 08 13

04 09 14

The transpose algorithm is fairly easy to write in terms of two-dimensional arrays. However, the algorithms will
be a bit more complicated when the arrays involved are arrays of pixels making up an image. Most of this document
is devoted to explain the Java classes you need to play with images.

We suggest that, before writing the code to manipulate the images, you write a static function to produce the
transpose of a two-dimensional integer array b[0..r-1, 0..c-1], as well as a procedure to print (in the inter-
action pane) a rectangular array in order to help you debug your work. This practice makes code writing easier. You
will then simply translate your code into the ImageMap framework.

The comments in the body of transpose should help you write the body. In addition, use procedure Image-
Maintainer.hreflect as a model for accessing the elements of an ImageMap.

7C. Implement method filter. In this method, you change each pixel of the image to consist only of grey, red,
green, or blue, depending on the value of parameter color. Produce a “grey-scale image” by making all three com-
ponents —red, green, blue— equal to the average of the original red, green, and blue values. Filtering it through red
(and similarly through green and blue) is done by making the green and blue components 0.

This manipulation requires that you extract the alpha, red, green, and blue components from each pixel, construct
the new pixel value, and store it. Look at procedure invert to see how this is done.

8. Your task.

Start early, because you are sure to have questions! Waiting until the deadline will cause you frustration and lack
of understanding, instead of the fun that should be felt in completing this assignment. Complete the bodies of proce-
dures vreflect, transpose, and filter in class ImageMaintainer and change class ImageJFrame as
discussed in task 7A. Do not change anything else —do not declare new fields in the class and do not change any of
the other classes. You may, of course, add other methods to class ImageMaintainer. Submit your completed file
ImageMaintainer. java and ImageJFrame on the CMS by the due date.

