CS100J, Fall 2007, Assignment A4 9/23/07 8:19 PM

CS100J, Fall 2007, Assignment A4. Due Monday, 08 October, midnight, on the CMS
Purpose

To give you practice with writing functions whose bodies have assignment statements, conditional
statements, and blocks.

Ground rules

You may work with one partner. If you do, get on the CMS several days before the assignment is due and
group yourselves. Do not wait until the last minute to do this. It is dishonest for partners to work
independently on different parts of this assignment. You must work together on the whole assignment.

This is (roughly) a 10-hour assignment. Plan accordingly. Please keep track of your time and, just before
you submit, tell us in a comment at the top of the class how many hours you spent. Spend time reading this
handout so that you thoroughly understand what we are asking for before programming!

Class Time

You will write several functions in class Time. Use this skeleton: a class with all the methods specified but
with some stubs for bodies (empty body or simply a return statement), so that the program is syntactically
correct and will compile. All the methods are specified fully. Look at them carefully; they are so complete
that one can write the method body based on the specification. This is how you should write your method
specifications. You can also see the Javadoc specifications for the program. Get these from the course web

page.

An instance of class Time represents a time in some time zone. The time zones that are implemented are:

GMT: Greenwich Mean Time, GMT

BST: British Summer Time, GMT+1

EST: Eastern Standard Time, GMT-5 hours (NY)

EDT: Eastern Daylight Savings Time, GMT-4 hours (NY)
CST: Central Standard Time, GMT-6 hours (Chicago)

CDT: Central Daylight Savings Time, GMT-5 hours (Chicago)
MST: Mountain Standard Time, GMT-7 hours (Phoenix)
MDT: Mountain Daylight Savings Time, GMT-6 (Phoenix)
PST: Pacific Standard Time, GMT-8 hours (LA)

PDT: Pacific Daylight Saving Time, GMT-7 hours (LA)

IND: India time, GMT+5:30 hours (New Delhi) (Included to show that not all zones are on
hourly boundaries)

To find out more about time zones, visit these web sites: abbreviations, world clock, daylight saving time,
US law on time, time-zone map.

Some times may appear negative or greater than 24 hours. This is because we allow a conversion of a time
from one time zone to another. For example, a time of 0 hours GMT is —7 hours PDT, while a time of 23:59
GMT is 29:29 IND. See the comment on the class for a complete specification.

An instance of the class can show the time using a 24-hour clock or using the AM-PM designation; it is the
user's choice.


file:///Volumes/Work15A/CS100Fall2007/assignments/a4/studentfiles/doc/index.html
file:///Volumes/Work15A/CS100Fall2007/assignments/a4/studentfiles/Time.java
http://www.timeanddate.com/library/abbreviations/timezones
http://www.timeanddate.com/time/aboutdst.html
http://aa.usno.navy.mil/faq/docs/world_tzones.html
http://tycho.usno.navy.mil/260.html
http://www.timeanddate.com/worldclock/

CS100J, Fall 2007, Assignment A4 9/23/07 8:19 PM

Study the specification of the class and its methods carefully in order to get an overall view of what the
class is for. For this purpose, use either the skeleton or, better yet, the JAVADOC spec for it.

Create a JUnit testing class named TimeTester and use it to test all your methods. You will submit it on the
CMS, and your grade will depend partly on the test cases that you use to test your methods. Please be
thorough in your testing.

This assignment will be presented as a series of tasks. Finish each task completely before proceeding to
the next. Wherever it is possible, write each method in an incremental fashion. This holds especially for
method toString, which is fairly complicated. Test each method carefully and thoroughly, using the JUnit
testing class, before proceeding to the next.

Task 1: getter methods

You can see in the skeleton that we have given you two completed two constructors (and one that is
uncompleted). Therefore, you can create instances of the class, but you can't get anything out of them. Your
first task is to complete getter methods getTime, getZone, and getAmPm. Once they are properly written,
check them out! This task should not be difficult.

Task 2: function toString.

Write function toString. You MUST follow its specification carefully. Don't just blindly make it do what
you want; implement it to be consistent with the specification. To help you, we have put in the body of
toString a sequence of statement-comments that, together, do what the body 1s supposed to do. All you have
to do is implement these statement-comments. Of course, you may start with an empty body and do it the
way YOU want. But it must be correct!

After your write function toString, test it thoroughly, using class TimeTester, with instances of the class for
negative times, times in the range 0..24, and times greater than 24 hours and with hours, minutes, and
seconds being 1 or 2 digits long. Also, test these with both modes of output —24-hour clock and 12-hour
clock. This function MUST be correct before you proceed.

Task 3: function isLegal.

Users may give time zones that are not legal. The purpose of private function isLegal is to test whether its
parameter is one of the legal time zones, returning true if it is and false if it is not. Implement isLegal. Test
iton ALL legal zones, as well as illegal ones, before proceeding to the next step. Notice that the second
constructor calls isLegal, so, you can test isLegal using this constructor. Hint: Here's one way to think about
writing isLegal. Can you use one of the String functions to search for a zone in some String value?

Task 4: procedure setDisplay.
This procedure should be easy to write and test. It is a simple setter method.

Task 5: the third constructor.

Up to now, any instance you created had either time O or a time for which you gave a number of seconds.
Now implement the third constructor, the one that has 5 parameters. Use the second constructor as an
example in writing this one. Test it thoroughly before proceeding!

Task 6: function timeInZone.

This function is given a time in one zone and is asked to create a new Time object that has the same time
but in a different time zone. To help you out, take a look at function timeInGMT. It does roughly the same
thing but always converts to GMT time. Function timeInGMT should give you an idea how to write
function timelnZone. Here's a point to ponder. You have to translate from ANY time zone to ANY OTHER
time zone. How many possibilities are there? Can you make use of function timeInGMT to simplify the
task? Make sure you test this method thoroughly before proceeding in to the next task.



CS100J, Fall 2007, Assignment A4 9/23/07 8:19 PM

Task 7: function compareTo.

Implement function compareTo. Of course, it has to satisfy its specification. Note that time 18:00 GMT is
the same as time 13:00 EST. You can't really compare the times until they are both converted to the same
time zone. What's the simplest way to do that?

Task 8. Finish up.

You have written all the methods. You see how a class filled with methods can be written one method at a
time, in order to come up with a neat little class. Now, go over your program once more. Make sure the
indentation is correct —use DrJava's indenting feature if you want— and make sure that the comments are
suitable (we gave most of them to you).

Finally, place a comment at the top of the class that tells us how many hours you worked on this
assignment.

The GUI

We have included a simple GUI (Graphical User Interface), the first of several you will see in assignments.
Call instance procedure display() to display a JFrame that contains the time of the object (in which disaply()
appears in ALL 11 time zones. You can use this to see whether your time-zone conversion method works,
although you should still have test cases for it in class TimeTester.

You don't have to look at procedure display(), but we will use it in class to begin showing you how to build
GUIs in Java.

What to submit

Submit files Time.java and TimeTester.java. Before you do that, please place a comment at the top of the
class that tells us roughly how many hours you worked on this assignment.

Notes

1. Restriction on times. Any time that is given in a new expression will be greater than —24 hours (— 1 day)
and less than 48 hours (2 days) ---or else O is used instead. This restriction applies only to values given as
arguments in constructor calls. That is the only place restrictions are given in the specification. An internal
time may get out of that range. For example, if you create a folder with time 47 hours GMT and then
convert it to India time, the India time will be 53 hours and 30 minutes. The restriction does imply that any
hour of a time to be printed takes at most two digits.

2. About the arguments h, m, and s in the constructor that you have to write. (a) No restriction is given
on these parameters individually, so there is no need to check them individually. However, when the given
time 1s translated to seconds, the result should be greater than —24 hours (ie. —1 day, or whatever that is in
seconds) and less than 48 hours (i.e. 2 days, or whatever that is in seconds).

(b) The obvious way to translate h hours, m minutes, s seconds to a time in seconds is to convert all three
values to seconds and add them together. Do this. This implies that h = 48, m = 0, and s = 1 is an illegal
time, because it is greater than 2 days. Also, h=48, m =0, s = -1 is a legal time, since it is 1 second less
than 2 days.

3. Time zones consist of capital letters. For example, "GMT" is a time zone but "gmT" is not.

4. Extra (private) methods. You may write extra private methods. Whenever you are given a program to
write. as vou proceed. vou may find it helpful to add new methods in order to keep other methods simple



CS100J, Fall 2007, Assignment A4 9/23/07 8:19 PM

and understandable. You saw this in the program to anglicize integers, which we developed in class.
S. Rules for function toString. Function toString must satisfy the following.
(a) If the time is negative, then a 24 hour clock is to be used.

!

(b) Precede a negative time by '-'. Here are two times and their output from toString:
- 48370 seconds, i.e. (-13 hours, -26 minutes, -10 seconds) in GMT : "-13:26:10 GMT"
- 36970 seconds, i.e. (-10 hours, -16 minutes, -10 seconds in GMT : "-10:16:10 GMT"

(c) Precede a positive time by a blank. Here is a positive time and a negative time and the output from
toString:

36970 seconds, i.e. (10 hours, 16 minutes, 10 seconds in GMT : "10:16:10 GMT"

- 36970 seconds, i.e. (-10 hours, -16 minutes, -10 seconds in GMT : "-10:16:10 GMT"
(d) The hours, minutes, and seconds MUST each be two digits. Examples:

0 hours, 5 minutes, 16 seconds in GMT : "00:05:16 GMT"

6 hours, 15 minutes, 6 seconds in GMT : "00:15:06 GMT"

(e) The time O is midnight. It is usually thought of as AM, so print time O in 12-hour time with an AM
indication. Similarly, noon is the beginning of PM, so it should be printed in 12-hour time with a PM
indication.

Note: It may be advantageous to write an auxiliary private function that, given a string that contains an
unsigned integer, returns a string that represents the same unsigned integer but has length at least two (it
prepends a leading O if necessary). Then call this function in several different places.

file:///Volumes/Work15A/CS100Fall2007/assignments/a4/a4.html Page 4 of 4



