CS100] 02 May
Matlab and PI and other things

m The notation j : k gives a row matrix consisting of the
integers from 7§ through k.
>> 1:8
ans =
1 2 3 4 5 6 7 8
m The notation j :b:k gives a row matrix consisting of
the integers from 7§ through k in steps of b.
>> 1:2:10
ans =
1 3 5 7 9
m To get a vector of n linearly spaced points between lo
and hi, use linspace (lo,hi,n
>> linspace(1,3,5)
ans =
1.0 1.5 2.0 2.5 3.0
m To transpose a matrix m, write m"

>> (1:3)"

ans = 1
2
3

sum, prod, cumsum, cumprod

m Function sum adds row elements, and function
prod multiplies row elements:

>> sum(1:1000)

ans =
500500
>> prod(1:5)
ans =
120

m Function cumsum computes a row of partial sums
and cumprod computes a row of partial products:

>> cumprod(1:7)
ans =
12 6 24 120 720
5040
>> cumsum (odds)
ans =
1 4 9 16 25 36
49 64

Compute Pi by Euler Formula

mLeonard Euler (1707-1783) derived the following
infinite sum expansion:

2 /6 =2x1/j2 (for j from 1 to =)

>> pi = sqrt( 6 .* cumsum(1 ./ (1:10) .A 2));
>> plot(pi)

mTo define a function, select New/m-file and type
definition:

% = a vector of approximations to pi.
function e = euler (n)

e= sqrt( 6 .* cumsum(l ./ (1:n) .~ 2));

mSelect SaveAs and save to a file with the same name
as the function.

wTo invoke:
>> pi= euler(100);
>> plot (pi)

Help System

m Use on-line help system
>> help function
. description of how to define
functions ...

>> help euler
= a vector of approximations to pi,
using Euler’s appoximation

Compute Pi by Wallis Formula

John Wallis (1616-1703) derived the following
infinite sum expansion:
(2%2) * (4%4) * (6%6) * ...

/2=

(1*3) * (3*5) * (5*%7) * ...

m Terms in Numerator
evens .*

m Terms in Denominator
13 5 7 9 ... odds
35 7 9 11 ... odds + 2

1*3 3*5 5%7 7%9  9*11

i€ odds .* (odds + 2)

= Quotient
prod( (evens .~ 2) ./ (odds .*
(odds+2))

m Successive approximations to Pi

pi = 2 .* cumprod( (evens.*2) ./
(odds .* (odds+2)) )

Wallis Function

m Function Definition

function w = wallis(n)

% compute successive approx’s to pi.
evens = 2 .* (l:n);

odds = evens - 1;

odds2 = odds .* (odds + 2);

w =2 .* cumprod( (evens .~ 2) ./ odds2

m Contrasting Wallis and Euler approximations
>> plot(1:100, euler(100), 1:100,
wallis(100))




Compute Pi by Throwing Darts

m Throw random darts at a circle of radius 1
inscribed in a 2-by-2 square.

O
A

The fraction hitting the circle should be the ratio
of the area of the circle to the area of the square:
f=n /4

This is called a Monte Carlo method
y

Darts

m (h,w) yields an h-by-w matrix of random numbers
between 0 and 1.

>> x = rand(1,10);

>> y = rand(1,10);

m Let d2 be the distance squared from the center of
the circle.

>>d2 = (x .~ 2) + (y ." 2);

®m in be arow of 0's and 1's signifying whether the
dart is in (1) or not in (0) the circle. Note 1 is
used for true and 0 for false.

>> in = d2 <= 1;

m hits(i) be the number of darts in circle in i tries

>> hits = cumsum(in);

m £ (i) be franction of darts in circle in i tries
>> £ = hits ./ (1:10);

®m pi be successive approximations to pi

>> pi=4 % f;

Compute Pi by Throwing Needles

In 1777, Comte de Buffon published this method for
computing :

N needles of length 1 are thrown at random
positions and random angles on a plate ruled by
parallel lines distance 1 apart. The probability
that a needle intersects one of the ruled lines is 2/
n. Thus, as N approaches infinity, the fraction of
needles intersecting a ruled line approaches 2/x.

Subscripting

= Subscripts start at 1, not zero.

>>a=1[123;456; 7829]
ans = 1 2
4 5
7 8

© o w

>> a(2,2)
ans =
5

m A range of indices can be specified:
>> a(1:2, 2:3
ans =

2 3

5 6

m A colon indicates all subscripts in range:
>> a(:, 2:3)

ans =
2 3
5 6
8 9

Control Structures: Conditionals

if expression
list-of-statements
end

if expression
list-of-statements
else
list-of-statements
end

if expression
list-of-statements
elseif expression
list-of-statements

elseif expression
list-of-statements
else
list-of-statements
end

Control Structures: Loops

while expression
list-of-statements
end

for variable = lo:hi
list-of-statements
end

for variable = lo:by:hi
list-of-statements
end




